{"title":"Mean Field Equations for the Equilibrium Turbulence and Toda Systems on Connected Finite Graphs","authors":"Xiao-Dan Zhu","doi":"10.4208/jpde.v35.n3.1","DOIUrl":null,"url":null,"abstract":". In this paper, we study existence of solutions of mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs. Our method is based on calculus of variations, which was built on connected finite graphs by Grigor’yan, Lin and Yang.","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n3.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
. In this paper, we study existence of solutions of mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs. Our method is based on calculus of variations, which was built on connected finite graphs by Grigor’yan, Lin and Yang.