Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements

Aviad Levis, Daeyoung Lee, J. Tropp, C. Gammie, K. Bouman
{"title":"Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements","authors":"Aviad Levis, Daeyoung Lee, J. Tropp, C. Gammie, K. Bouman","doi":"10.1109/iccv48922.2021.00234","DOIUrl":null,"url":null,"abstract":"We develop an approach to recover the underlying properties of fluid-dynamical processes from sparse measurements. We are motivated by the task of imaging the stochastically evolving environment surrounding black holes, and demonstrate how flow parameters can be estimated from sparse interferometric measurements used in radio astronomical imaging. To model the stochastic flow we use spatio-temporal Gaussian Random Fields (GRFs). The high dimensionality of the underlying source video makes direct representation via a GRF’s full covariance matrix intractable. In contrast, stochastic partial differential equations are able to capture correlations at multiple scales by specifying only local interaction coefficients. Our approach estimates the coefficients of a space-time diffusion equation that dictates the stationary statistics of the dynamical process. We analyze our approach on realistic simulations of black hole evolution and demonstrate its advantage over state-of-the-art dynamic black hole imaging techniques.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"74 1","pages":"2320-2329"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccv48922.2021.00234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We develop an approach to recover the underlying properties of fluid-dynamical processes from sparse measurements. We are motivated by the task of imaging the stochastically evolving environment surrounding black holes, and demonstrate how flow parameters can be estimated from sparse interferometric measurements used in radio astronomical imaging. To model the stochastic flow we use spatio-temporal Gaussian Random Fields (GRFs). The high dimensionality of the underlying source video makes direct representation via a GRF’s full covariance matrix intractable. In contrast, stochastic partial differential equations are able to capture correlations at multiple scales by specifying only local interaction coefficients. Our approach estimates the coefficients of a space-time diffusion equation that dictates the stationary statistics of the dynamical process. We analyze our approach on realistic simulations of black hole evolution and demonstrate its advantage over state-of-the-art dynamic black hole imaging techniques.
从稀疏干涉测量推断黑洞流体动力学
我们开发了一种从稀疏测量中恢复流体动力学过程的基本特性的方法。我们的动机是成像黑洞周围随机演化环境的任务,并演示如何通过射电天文成像中使用的稀疏干涉测量来估计流量参数。为了模拟随机流,我们使用时空高斯随机场(GRFs)。底层源视频的高维性使得通过GRF的全协方差矩阵直接表示变得难以处理。相比之下,随机偏微分方程能够通过仅指定局部相互作用系数来捕获多个尺度上的相关性。我们的方法估计时空扩散方程的系数,该方程决定了动态过程的平稳统计。我们分析了我们的方法在黑洞演化的现实模拟,并证明了它比最先进的动态黑洞成像技术的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信