Finding approximate local minima faster than gradient descent

Naman Agarwal, Z. Zhu, Brian Bullins, Elad Hazan, Tengyu Ma
{"title":"Finding approximate local minima faster than gradient descent","authors":"Naman Agarwal, Z. Zhu, Brian Bullins, Elad Hazan, Tengyu Ma","doi":"10.1145/3055399.3055464","DOIUrl":null,"url":null,"abstract":"We design a non-convex second-order optimization algorithm that is guaranteed to return an approximate local minimum in time which scales linearly in the underlying dimension and the number of training examples. The time complexity of our algorithm to find an approximate local minimum is even faster than that of gradient descent to find a critical point. Our algorithm applies to a general class of optimization problems including training a neural network and other non-convex objectives arising in machine learning.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"231","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 231

Abstract

We design a non-convex second-order optimization algorithm that is guaranteed to return an approximate local minimum in time which scales linearly in the underlying dimension and the number of training examples. The time complexity of our algorithm to find an approximate local minimum is even faster than that of gradient descent to find a critical point. Our algorithm applies to a general class of optimization problems including training a neural network and other non-convex objectives arising in machine learning.
找到近似的局部最小值比梯度下降更快
我们设计了一个非凸二阶优化算法,保证在时间上返回一个近似的局部最小值,该最小值在底层维数和训练样本数量上呈线性扩展。该算法查找近似局部最小值的时间复杂度甚至比梯度下降法查找临界点的时间复杂度还要快。我们的算法适用于一般类型的优化问题,包括训练神经网络和机器学习中出现的其他非凸目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信