Non-linear spectra of matrices and extremal problems

A.N. Buslayev
{"title":"Non-linear spectra of matrices and extremal problems","authors":"A.N. Buslayev","doi":"10.1016/0041-5553(90)90199-3","DOIUrl":null,"url":null,"abstract":"<div><p>Theoretical questions and the computational aspects of the search for the spectral values λ and vectors <em>xϵR</em><sup><em>m</em></sup>{<em>ϵ</em>0} of a system <em>A</em><sup><em>τ</em></sup>(<em>Ax</em>)<sub>(<em>q</em>)</sub> = <em>λ</em><sup><em>q</em></sup>(<em>x</em>)<sub>(<em>p</em>)</sub>, where <em>A</em> is a <em>k</em> × <em>m</em> matrix, 1 ⩽ <em>p</em>, <em>q</em> &lt; ∞ are presented. When <em>p</em> = <em>q</em> = 2 this is simply the problem of determining the singular values of <em>A</em>. Nonlinear systems ((<em>p</em> − 2)<sup>2</sup> + (<em>q</em> − 2)<sup>2</sup> ≠ 0) arise in many fields of analysis, mechanics and approximation theory.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 3","pages":"Pages 117-126"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90199-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0041555390901993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Theoretical questions and the computational aspects of the search for the spectral values λ and vectors xϵRm{ϵ0} of a system Aτ(Ax)(q) = λq(x)(p), where A is a k × m matrix, 1 ⩽ p, q < ∞ are presented. When p = q = 2 this is simply the problem of determining the singular values of A. Nonlinear systems ((p − 2)2 + (q − 2)2 ≠ 0) arise in many fields of analysis, mechanics and approximation theory.

矩阵的非线性谱与极值问题
寻找系统Aτ(Ax)(q) = λq(x)(p)的谱值λ和向量xϵRm{ϵ0}的理论问题和计算方面,其中a是k × m矩阵,1≤p, q <∞呈现。非线性系统((p−2)2 + (q−2)2≠0)在分析、力学和近似理论的许多领域中都有出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信