Real stable polynomials and matroids: optimization and counting

D. Straszak, Nisheeth K. Vishnoi
{"title":"Real stable polynomials and matroids: optimization and counting","authors":"D. Straszak, Nisheeth K. Vishnoi","doi":"10.1145/3055399.3055457","DOIUrl":null,"url":null,"abstract":"Several fundamental optimization and counting problems arising in computer science, mathematics and physics can be reduced to one of the following computational tasks involving polynomials and set systems: given an oracle access to an m-variate real polynomial g and to a family of (multi-)subsets ℬ of [m], (1) compute the sum of coefficients of monomials in g corresponding to all the sets that appear in B(1), or find S ε ℬ such that the monomial in g corresponding to S has the largest coefficient in g. Special cases of these problems, such as computing permanents and mixed discriminants, sampling from determinantal point processes, and maximizing sub-determinants with combinatorial constraints have been topics of much recent interest in theoretical computer science. In this paper we present a general convex programming framework geared to solve both of these problems. Subsequently, we show that roughly, when g is a real stable polynomial with non-negative coefficients and B is a matroid, the integrality gap of our convex relaxation is finite and depends only on m (and not on the coefficients of g). Prior to this work, such results were known only in important but sporadic cases that relied heavily on the structure of either g or ℬ; it was not even a priori clear if one could formulate a convex relaxation that has a finite integrality gap beyond these special cases. Two notable examples are a result by Gurvits for real stable polynomials g when ℬ contains one element, and a result by Nikolov and Singh for a family of multi-linear real stable polynomials when B is the partition matroid. This work, which encapsulates almost all interesting cases of g and B, benefits from both - it is inspired by the latter in coming up with the right convex programming relaxation and the former in deriving the integrality gap. However, proving our results requires extensions of both; in that process we come up with new notions and connections between real stable polynomials and matroids which might be of independent interest.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Several fundamental optimization and counting problems arising in computer science, mathematics and physics can be reduced to one of the following computational tasks involving polynomials and set systems: given an oracle access to an m-variate real polynomial g and to a family of (multi-)subsets ℬ of [m], (1) compute the sum of coefficients of monomials in g corresponding to all the sets that appear in B(1), or find S ε ℬ such that the monomial in g corresponding to S has the largest coefficient in g. Special cases of these problems, such as computing permanents and mixed discriminants, sampling from determinantal point processes, and maximizing sub-determinants with combinatorial constraints have been topics of much recent interest in theoretical computer science. In this paper we present a general convex programming framework geared to solve both of these problems. Subsequently, we show that roughly, when g is a real stable polynomial with non-negative coefficients and B is a matroid, the integrality gap of our convex relaxation is finite and depends only on m (and not on the coefficients of g). Prior to this work, such results were known only in important but sporadic cases that relied heavily on the structure of either g or ℬ; it was not even a priori clear if one could formulate a convex relaxation that has a finite integrality gap beyond these special cases. Two notable examples are a result by Gurvits for real stable polynomials g when ℬ contains one element, and a result by Nikolov and Singh for a family of multi-linear real stable polynomials when B is the partition matroid. This work, which encapsulates almost all interesting cases of g and B, benefits from both - it is inspired by the latter in coming up with the right convex programming relaxation and the former in deriving the integrality gap. However, proving our results requires extensions of both; in that process we come up with new notions and connections between real stable polynomials and matroids which might be of independent interest.
实稳定多项式和拟阵:优化和计数
计算机科学、数学和物理学中出现的几个基本优化和计数问题可以归结为以下涉及多项式和集合系统的计算任务之一:给定对一个m变量实多项式g和[m]的一组(多)子集_[1]的oracle访问,(1)计算g中对应于B(1)中出现的所有集合的单项式的系数和,或者找到S ε _使g中对应于S的单项式在g中具有最大的系数。这些问题的特殊情况,例如计算永久和混合判别,从确定性点过程中采样,在组合约束下最大化子行列式已经成为理论计算机科学最近的热门话题。在本文中,我们提出了一个通用的凸规划框架来解决这两个问题。随后,我们粗略地证明,当g是一个具有非负系数的实稳定多项式并且B是一个矩阵时,我们的凸松弛的完整性间隙是有限的并且仅取决于m(而不取决于g的系数)。在此工作之前,这样的结果仅在重要但零星的情况下被知道,这些情况严重依赖于g或eg的结构;在这些特殊情况之外,我们甚至不能先验地确定是否有一个具有有限积分间隙的凸松弛。两个值得注意的例子是Gurvits对一元实稳定多项式g的结果,以及Nikolov和Singh对多元线性实稳定多项式族在B为分拆矩阵时的结果。这项工作,封装了g和B的几乎所有有趣的情况,受益于两者——它的灵感来自于后者,因为它提出了正确的凸规划松弛,而前者则来自于推导完整性间隙。然而,证明我们的结果需要两者的扩展;在这个过程中,我们提出了新的概念和联系,在实稳定多项式和拟阵之间,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信