{"title":"Bounding the invariant spectrum when the\n scalar curvature is non-negative","authors":"Stuart J. Hall, T. Murphy","doi":"10.1090/conm/756/15202","DOIUrl":null,"url":null,"abstract":"On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/756/15202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.