DisPad: Flexible On-Body Displacement of Fabric Sensors for Robust Joint-Motion Tracking

Xiaowei Chen, Xiao Jiang, Jia-Qi Fang, Shihui Guo, Juncong Lin, Minghong Liao, Guoliang Luo, Hongbo Fu
{"title":"DisPad: Flexible On-Body Displacement of Fabric Sensors for Robust Joint-Motion Tracking","authors":"Xiaowei Chen, Xiao Jiang, Jia-Qi Fang, Shihui Guo, Juncong Lin, Minghong Liao, Guoliang Luo, Hongbo Fu","doi":"10.48550/arXiv.2301.06249","DOIUrl":null,"url":null,"abstract":"The last few decades have witnessed an emerging trend of wearable soft sensors; however, there are important signal-processing challenges for soft sensors that still limit their practical deployment. They are error-prone when displaced, resulting in significant deviations from their ideal sensor output. In this work, we propose a novel prototype that integrates an elbow pad with a sparse network of soft sensors. Our prototype is fully bio-compatible, stretchable, and wearable. We develop a learning-based method to predict the elbow orientation angle and achieve an average tracking error of 9.82 degrees for single-user multi-motion experiments. With transfer learning, our method achieves the average tracking errors of 10.98 degrees and 11.81 degrees across different motion types and users, respectively. Our core contributions lie in a solution that realizes robust and stable human joint motion tracking across different device displacements.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"8 1","pages":"5:1-5:27"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.06249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The last few decades have witnessed an emerging trend of wearable soft sensors; however, there are important signal-processing challenges for soft sensors that still limit their practical deployment. They are error-prone when displaced, resulting in significant deviations from their ideal sensor output. In this work, we propose a novel prototype that integrates an elbow pad with a sparse network of soft sensors. Our prototype is fully bio-compatible, stretchable, and wearable. We develop a learning-based method to predict the elbow orientation angle and achieve an average tracking error of 9.82 degrees for single-user multi-motion experiments. With transfer learning, our method achieves the average tracking errors of 10.98 degrees and 11.81 degrees across different motion types and users, respectively. Our core contributions lie in a solution that realizes robust and stable human joint motion tracking across different device displacements.
DisPad:用于强健关节运动跟踪的柔性体上位移织物传感器
过去几十年见证了可穿戴软传感器的新兴趋势;然而,软传感器在信号处理方面仍存在重要挑战,这限制了它们的实际应用。当位移时,它们容易出错,导致与理想传感器输出的显著偏差。在这项工作中,我们提出了一种新颖的原型,将肘部垫与稀疏的软传感器网络集成在一起。我们的原型是完全生物兼容的,可拉伸的,可穿戴的。我们开发了一种基于学习的方法来预测肘关节方向角,在单用户多动作实验中实现了平均9.82度的跟踪误差。通过迁移学习,我们的方法在不同运动类型和不同用户上的平均跟踪误差分别为10.98度和11.81度。我们的核心贡献在于实现跨不同设备位移的鲁棒和稳定的人体关节运动跟踪的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信