Improving IP Geolocation using Query Logs

Ovidiu Dan, Vaibhav Parikh, Brian D. Davison
{"title":"Improving IP Geolocation using Query Logs","authors":"Ovidiu Dan, Vaibhav Parikh, Brian D. Davison","doi":"10.1145/2835776.2835820","DOIUrl":null,"url":null,"abstract":"IP geolocation databases map IP addresses to their geographical locations. These databases are important for several applications such as local search engine relevance, credit card fraud protection, geotargetted advertising, and online content delivery. While they are the most popular method of geolocation, they can have low accuracy at the city level. In this paper we evaluate and improve IP geolocation databases using data collected from search engine logs. We generate a large ground-truth dataset using real time global positioning data extracted from search engine logs. We show that incorrect geolocation information can have a negative impact on implicit user metrics. Using the dataset we measure the accuracy of three state-of-the-art commercial IP geolocation databases. We then introduce a technique to improve existing geolocation databases by mining explicit locations from query logs. We show significant accuracy gains in 44 to 49 out of the top 50 countries, depending on the IP geolocation database. Finally, we validate the approach with a large scale A/B experiment that shows improvements in several user metrics.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

IP geolocation databases map IP addresses to their geographical locations. These databases are important for several applications such as local search engine relevance, credit card fraud protection, geotargetted advertising, and online content delivery. While they are the most popular method of geolocation, they can have low accuracy at the city level. In this paper we evaluate and improve IP geolocation databases using data collected from search engine logs. We generate a large ground-truth dataset using real time global positioning data extracted from search engine logs. We show that incorrect geolocation information can have a negative impact on implicit user metrics. Using the dataset we measure the accuracy of three state-of-the-art commercial IP geolocation databases. We then introduce a technique to improve existing geolocation databases by mining explicit locations from query logs. We show significant accuracy gains in 44 to 49 out of the top 50 countries, depending on the IP geolocation database. Finally, we validate the approach with a large scale A/B experiment that shows improvements in several user metrics.
使用查询日志改进IP地理定位
IP地理位置数据库将IP地址映射到其地理位置。这些数据库对于本地搜索引擎相关性、信用卡欺诈保护、地理定位广告和在线内容交付等应用程序非常重要。虽然它们是最流行的地理定位方法,但它们在城市层面的精度可能较低。在本文中,我们使用从搜索引擎日志中收集的数据来评估和改进IP地理定位数据库。我们使用从搜索引擎日志中提取的实时全球定位数据生成了一个大型的地面真实数据集。我们表明,不正确的地理位置信息会对隐式用户度量产生负面影响。使用该数据集,我们测量了三个最先进的商业IP地理定位数据库的准确性。然后,我们介绍了一种通过从查询日志中挖掘显式位置来改进现有地理位置数据库的技术。根据IP地理定位数据库,我们在排名前50位的国家中,有44到49个国家的准确性有了显著提高。最后,我们通过大规模的a /B实验验证了该方法,该实验显示了几个用户指标的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信