Data curation in the Internet of Things: A decision model approach

IF 0.9 Q3 MATHEMATICS, APPLIED
Francisco José de Haro-Olmo, Álvaro Valencia-Parra, Ángel Jesús Varela-Vaca, José Antonio Álvarez-Bermejo
{"title":"Data curation in the Internet of Things: A decision model approach","authors":"Francisco José de Haro-Olmo,&nbsp;Álvaro Valencia-Parra,&nbsp;Ángel Jesús Varela-Vaca,&nbsp;José Antonio Álvarez-Bermejo","doi":"10.1002/cmm4.1191","DOIUrl":null,"url":null,"abstract":"<p>Current Internet of Things (IoT) scenarios have to deal with many challenges especially when a large amount of heterogeneous data sources are integrated, that is, data curation. In this respect, the use of poor-quality data (i.e., data with problems) can produce terrible consequence from incorrect decision-making to damaging the performance in the operations. Therefore, using data with an acceptable level of usability has become essential to achieve success. In this article, we propose an IoT-big data pipeline architecture that enables data acquisition and data curation in any IoT context. We have customized the pipeline by including the DMN4DQ approach to enable us the measuring and evaluating data quality in the data produced by IoT sensors. Further, we have chosen a real dataset from sensors in an agricultural IoT context and we have defined a decision model to enable us the automatic measuring and assessing of the data quality with regard to the usability of the data in the context.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1191","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Current Internet of Things (IoT) scenarios have to deal with many challenges especially when a large amount of heterogeneous data sources are integrated, that is, data curation. In this respect, the use of poor-quality data (i.e., data with problems) can produce terrible consequence from incorrect decision-making to damaging the performance in the operations. Therefore, using data with an acceptable level of usability has become essential to achieve success. In this article, we propose an IoT-big data pipeline architecture that enables data acquisition and data curation in any IoT context. We have customized the pipeline by including the DMN4DQ approach to enable us the measuring and evaluating data quality in the data produced by IoT sensors. Further, we have chosen a real dataset from sensors in an agricultural IoT context and we have defined a decision model to enable us the automatic measuring and assessing of the data quality with regard to the usability of the data in the context.

Abstract Image

物联网中的数据管理:决策模型方法
当前的物联网场景必须应对许多挑战,特别是当大量异构数据源集成时,即数据管理。在这方面,使用低质量的数据(即有问题的数据)可能会产生可怕的后果,从错误的决策到破坏操作中的性能。因此,使用具有可接受可用性水平的数据已成为取得成功的必要条件。在本文中,我们提出了一种物联网大数据管道架构,可以在任何物联网环境中进行数据采集和数据管理。我们通过包括DMN4DQ方法定制了管道,使我们能够测量和评估物联网传感器产生的数据中的数据质量。此外,我们从农业物联网环境中的传感器中选择了一个真实的数据集,并定义了一个决策模型,使我们能够根据数据在该环境中的可用性自动测量和评估数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信