Electrodynamics of metamaterials and the Landau–Lifshitz approach to the magnetic permeability

V.M. Agranovich , Yu.N. Gartstein
{"title":"Electrodynamics of metamaterials and the Landau–Lifshitz approach to the magnetic permeability","authors":"V.M. Agranovich ,&nbsp;Yu.N. Gartstein","doi":"10.1016/j.metmat.2009.02.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>We discuss a relationship between the traditional framework of the frequency-dependent dielectric permittivity </span><span><math><mi>ɛ</mi><mrow><mo>(</mo><mrow><mi>ω</mi></mrow><mo>)</mo></mrow></math></span><span> and magnetic permeability </span><span><math><mi>μ</mi><mrow><mo>(</mo><mrow><mi>ω</mi></mrow><mo>)</mo></mrow></math></span><span> in the electrodynamics of continuous media and the spatial dispersion framework utilizing the dielectric tensor </span><span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>ω</mi><mtext>,</mtext><mstyle><mtext>k</mtext></mstyle></mrow><mo>)</mo></mrow></math></span> depending both on the frequency <span><math><mi>ω</mi></math></span> and wavevector <span><math><mstyle><mtext>k</mtext></mstyle></math></span><span>. For electromagnetic waves, the latter approach includes the former as a specific limiting case for small </span><strong>k</strong> within the <span><math><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> accuracy. While the dispersion of the transverse electromagnetic waves in this approximation is captured by the <span><math><mi>ɛ</mi><mrow><mo>(</mo><mrow><mi>ω</mi></mrow><mo>)</mo></mrow><mi>–</mi><mi>μ</mi><mrow><mo>(</mo><mrow><mi>ω</mi></mrow><mo>)</mo></mrow></math></span> phenomenology, the dispersion of the longitudinal electric waves would be missed. The general <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>ω</mi><mtext>,</mtext><mstyle><mtext>k</mtext></mstyle></mrow><mo>)</mo></mrow></math></span> framework also accommodates more complex situations such as excitonic resonances and additional electromagnetic waves. We also review the well-known Landau–Lifshitz arguments on the physical meaning of <span><math><mi>μ</mi><mrow><mo>(</mo><mrow><mi>ω</mi></mrow><mo>)</mo></mrow></math></span> at sufficiently high frequencies. In that context, the need is discussed for the effective medium response to include contributions from the spatial dispersion of the electric-dipole polarization and from the electric-quadrupole polarization on an equal footing with contributions from the magnetic-dipole resonances.</p></div>","PeriodicalId":100920,"journal":{"name":"Metamaterials","volume":"3 1","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.metmat.2009.02.002","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873198809000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

We discuss a relationship between the traditional framework of the frequency-dependent dielectric permittivity ɛ(ω) and magnetic permeability μ(ω) in the electrodynamics of continuous media and the spatial dispersion framework utilizing the dielectric tensor ɛij(ω,k) depending both on the frequency ω and wavevector k. For electromagnetic waves, the latter approach includes the former as a specific limiting case for small k within the k2 accuracy. While the dispersion of the transverse electromagnetic waves in this approximation is captured by the ɛ(ω)μ(ω) phenomenology, the dispersion of the longitudinal electric waves would be missed. The general ɛij(ω,k) framework also accommodates more complex situations such as excitonic resonances and additional electromagnetic waves. We also review the well-known Landau–Lifshitz arguments on the physical meaning of μ(ω) at sufficiently high frequencies. In that context, the need is discussed for the effective medium response to include contributions from the spatial dispersion of the electric-dipole polarization and from the electric-quadrupole polarization on an equal footing with contributions from the magnetic-dipole resonances.

超材料的电动力学和磁导率的Landau-Lifshitz方法
我们讨论了连续介质电动力学中频率相关的介电介电常数和磁导率μ(ω)的传统框架与依赖于频率ω和波矢量k的介电张量的空间色散框架之间的关系。对于电磁波,后一种方法包括前者作为k2精度范围内小k的特定极限情况。在这种近似中,横向电磁波的色散被用ε (ω) -μ (ω)现象学捕获,而纵向电磁波的色散将被忽略。一般的ij(ω,k)框架也适用于更复杂的情况,如激子共振和附加电磁波。我们还回顾了著名的关于μ(ω)在足够高的频率下的物理意义的Landau-Lifshitz论证。在这种情况下,讨论了有效介质响应是否需要包括电偶极子极化和电四极子极化在与磁偶极子共振相同的基础上的空间色散贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信