Discussion on Comparing Machine Learning Models for Health Outcome Prediction

Janusz Wojtusiak, Negin Asadzadehzanjani
{"title":"Discussion on Comparing Machine Learning Models for Health Outcome Prediction","authors":"Janusz Wojtusiak, Negin Asadzadehzanjani","doi":"10.5220/0010916600003123","DOIUrl":null,"url":null,"abstract":": This position paper argues the need for more details than simple statistical accuracy measures when comparing machine learning models constructed for patient outcome prediction. First, statistical accuracy measures are briefly discussed, including AROC, APRC, predictive accuracy, precision, recall, and their variants. Then, model correlation plots are introduced that compare outputs from two models. Finally, a more detailed analysis of inputs to the models is presented. The discussions are illustrated with two classification problems in predicting patient mortality and high utilization of medical services.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"14 1","pages":"711-718"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010916600003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: This position paper argues the need for more details than simple statistical accuracy measures when comparing machine learning models constructed for patient outcome prediction. First, statistical accuracy measures are briefly discussed, including AROC, APRC, predictive accuracy, precision, recall, and their variants. Then, model correlation plots are introduced that compare outputs from two models. Finally, a more detailed analysis of inputs to the models is presented. The discussions are illustrated with two classification problems in predicting patient mortality and high utilization of medical services.
比较机器学习模型在健康结果预测中的讨论
本文认为,在比较用于患者预后预测的机器学习模型时,需要更多的细节,而不是简单的统计准确性度量。首先,简要讨论了统计准确度度量,包括AROC、APRC、预测准确度、精密度、召回率及其变体。然后,引入模型相关图来比较两个模型的输出。最后,对模型的输入进行了更详细的分析。讨论了预测病人死亡率和医疗服务的高利用率的两个分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信