Novel gene re-arrangement in the mitochondrial genome of Pisidiaserratifrons (Anomura, Galatheoidea, Porcellanidae) and phylogenetic associations in Anomura.
Jiayin Lü, Xiangli Dong, Jiji Li, Yingying Ye, Kaida Xu
{"title":"Novel gene re-arrangement in the mitochondrial genome of <i>Pisidiaserratifrons</i> (Anomura, Galatheoidea, Porcellanidae) and phylogenetic associations in Anomura.","authors":"Jiayin Lü, Xiangli Dong, Jiji Li, Yingying Ye, Kaida Xu","doi":"10.3897/BDJ.11.e96231","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the taxonomy and systematics of Porcellanidae within the evolution of Anomura, we describe the complete mitochondrial genomes (mitogenomes) sequence of <i>Pisidiaserratifrons</i>, which is 15,344 bp in size, contains the entire set of 37 genes and has an AT-rich region. Compared with the pancrustacean ground pattern, at least five gene clusters (or genes) are significantly different with the typical genes, involving eleven tRNA genes and four PCGs and the tandem duplication/random loss and recombination models were used to explain the observed large-scale gene re-arrangements. The phylogenetic results showed that all Porcellanidae species clustered together as a group with well nodal support. Most Anomura superfamilies were found to be monophyletic, except Paguroidea. Divergence time estimation implies that the age of Anomura is over 225 MYA, dating back to at least the late Triassic. Most of the extant superfamilies and families arose during the late Cretaceous to early Tertiary. In general, the results obtained in this study will contribute to a better understanding of gene re-arrangements in Porcellanidae mitogenomes and provide new insights into the phylogeny of Anomura.</p>","PeriodicalId":23369,"journal":{"name":"Turkish Journal of Botany","volume":"1 1","pages":"e96231"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Botany","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/BDJ.11.e96231","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the taxonomy and systematics of Porcellanidae within the evolution of Anomura, we describe the complete mitochondrial genomes (mitogenomes) sequence of Pisidiaserratifrons, which is 15,344 bp in size, contains the entire set of 37 genes and has an AT-rich region. Compared with the pancrustacean ground pattern, at least five gene clusters (or genes) are significantly different with the typical genes, involving eleven tRNA genes and four PCGs and the tandem duplication/random loss and recombination models were used to explain the observed large-scale gene re-arrangements. The phylogenetic results showed that all Porcellanidae species clustered together as a group with well nodal support. Most Anomura superfamilies were found to be monophyletic, except Paguroidea. Divergence time estimation implies that the age of Anomura is over 225 MYA, dating back to at least the late Triassic. Most of the extant superfamilies and families arose during the late Cretaceous to early Tertiary. In general, the results obtained in this study will contribute to a better understanding of gene re-arrangements in Porcellanidae mitogenomes and provide new insights into the phylogeny of Anomura.
期刊介绍:
The Turkish Journal of Botany is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts manuscripts (in English) covering all areas of plant biology (including genetics, evolution, systematics, structure, function, development, diversity, conservation biology, biogeography, paleobotany, ontogeny, functional morphology, ecology, reproductive biology, and pollination biology), all levels of organisation (molecular to ecosystem), and all plant groups and allied organisms (algae, fungi, and lichens). Authors are required to frame their research questions and discuss their results in terms of major questions in plant biology. In general, papers that are too narrowly focused, purely descriptive, or broad surveys, or that contain only preliminary data or natural history, will not be considered (*).
The following types of article will be considered:
1. Research articles: Original research in various fields of botany will be evaluated as research articles.
2. Research notes: These include articles such as preliminary notes on a study or manuscripts on the morphological, anatomical, cytological, physiological, biochemical, and other properties of plant, algae, lichen and fungi species.
3. Reviews: Reviews of recent developments, improvements, discoveries, and ideas in various fields of botany.
4. Letters to the editor: These include opinions, comments relating to the publishing policy of the Turkish Journal of Botany, news, and suggestions. Letters should not exceed one journal page.
(*) 1. Raw floristic lists (of algae, lichens, fungi, or plants), species descriptions, chorological studies, and plant sociology studies without any additional independent approaches.
2. Comparative morphology and anatomy studies (that do not cover a family, tribe, subtribe, genus, subgenus, section, subsection, or species complexes with taxonomical problems) without one or more independent additional approaches such as phylogenetical, micromorphological, chromosomal and anatomical analyses.
3. Revisions of family, tribe, genus, subgenus, section, subsection, or species complexes without any original outputs such as taxonomical status changes, IUCN categories, and phenological and ecological analyses.
4. New taxa of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 3 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.
5. New taxa of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 5 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.