Statistical Analysis of Data for Dissolved Gases in Transformer

Navneet Bhargava, Aparna R. Gupta, Litesh Bopche
{"title":"Statistical Analysis of Data for Dissolved Gases in Transformer","authors":"Navneet Bhargava, Aparna R. Gupta, Litesh Bopche","doi":"10.1109/ICACAT.2018.8933700","DOIUrl":null,"url":null,"abstract":"The Genetic Algorithm is practical to resolve the obstacles of tiny samples and provide better prognostication for non linear behaviors and it is desirable for the Dissolved Gas Analysis in Power Transformers. The GA generates the initial accumulation at random prosper and scrutiny space faster and modifies the global search cognition and convergent speed. As question arises whether the data was nonlinear or not? It was decided to do the data analysis first. Thus the gas concentration in ppm (parts per million) of all the DGA samples was checked for non linearity.","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Genetic Algorithm is practical to resolve the obstacles of tiny samples and provide better prognostication for non linear behaviors and it is desirable for the Dissolved Gas Analysis in Power Transformers. The GA generates the initial accumulation at random prosper and scrutiny space faster and modifies the global search cognition and convergent speed. As question arises whether the data was nonlinear or not? It was decided to do the data analysis first. Thus the gas concentration in ppm (parts per million) of all the DGA samples was checked for non linearity.
变压器溶解气体数据的统计分析
遗传算法在解决小样本障碍和非线性行为预测方面具有较好的实用性,是电力变压器溶解气体分析的理想方法。该算法能够更快地在随机搜索空间和审查空间生成初始积累,提高全局搜索认知和收敛速度。问题是数据是否是非线性的?决定先做数据分析。因此,所有DGA样品的气体浓度以ppm(百万分之一)为单位进行非线性检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信