Dennis Appelt, Duy Cu Nguyen, L. Briand, N. Alshahwan
{"title":"Automated testing for SQL injection vulnerabilities: an input mutation approach","authors":"Dennis Appelt, Duy Cu Nguyen, L. Briand, N. Alshahwan","doi":"10.1145/2610384.2610403","DOIUrl":null,"url":null,"abstract":"Web services are increasingly adopted in various domains, from finance and e-government to social media. As they are built on top of the web technologies, they suffer also an unprecedented amount of attacks and exploitations like the Web. Among the attacks, those that target SQL injection vulnerabilities have consistently been top-ranked for the last years. Testing to detect such vulnerabilities before making web services public is crucial. We present in this paper an automated testing approach, namely μ4SQLi, and its underpinning set of mutation operators. μ4SQLi can produce effective inputs that lead to executable and harmful SQL statements. Executability is key as otherwise no injection vulnerability can be exploited. Our evaluation demonstrated that the approach is effective to detect SQL injection vulnerabilities and to produce inputs that bypass application firewalls, which is a common configuration in real world.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"64 1","pages":"259-269"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2610384.2610403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96
Abstract
Web services are increasingly adopted in various domains, from finance and e-government to social media. As they are built on top of the web technologies, they suffer also an unprecedented amount of attacks and exploitations like the Web. Among the attacks, those that target SQL injection vulnerabilities have consistently been top-ranked for the last years. Testing to detect such vulnerabilities before making web services public is crucial. We present in this paper an automated testing approach, namely μ4SQLi, and its underpinning set of mutation operators. μ4SQLi can produce effective inputs that lead to executable and harmful SQL statements. Executability is key as otherwise no injection vulnerability can be exploited. Our evaluation demonstrated that the approach is effective to detect SQL injection vulnerabilities and to produce inputs that bypass application firewalls, which is a common configuration in real world.