Naoki Masuyama, Narito Amako, Y. Nojima, Yiping Liu, C. Loo, H. Ishibuchi
{"title":"Fast Topological Adaptive Resonance Theory Based on Correntropy Induced Metric","authors":"Naoki Masuyama, Narito Amako, Y. Nojima, Yiping Liu, C. Loo, H. Ishibuchi","doi":"10.1109/SSCI44817.2019.9003098","DOIUrl":null,"url":null,"abstract":"Adaptive Resonance Theory (ART)-based growing self-organizing clustering is one of the most promising approaches for unsupervised topological clustering. In our previous study, we proposed a Topological Correntropy induced metric based ART (TCA) and shown its superior performance. However, TCA suffers from a data-dependent parameter and a complicated network creation process which lead to inefficient learning. This paper aims to solve problems of TCA by implementing an automatic parameter specification mechanism and simplifying a learning algorithm. Experimental results show that the proposed algorithm in this paper successfully solved the above problems.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"19 1","pages":"2215-2221"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Adaptive Resonance Theory (ART)-based growing self-organizing clustering is one of the most promising approaches for unsupervised topological clustering. In our previous study, we proposed a Topological Correntropy induced metric based ART (TCA) and shown its superior performance. However, TCA suffers from a data-dependent parameter and a complicated network creation process which lead to inefficient learning. This paper aims to solve problems of TCA by implementing an automatic parameter specification mechanism and simplifying a learning algorithm. Experimental results show that the proposed algorithm in this paper successfully solved the above problems.