Fast Topological Adaptive Resonance Theory Based on Correntropy Induced Metric

Naoki Masuyama, Narito Amako, Y. Nojima, Yiping Liu, C. Loo, H. Ishibuchi
{"title":"Fast Topological Adaptive Resonance Theory Based on Correntropy Induced Metric","authors":"Naoki Masuyama, Narito Amako, Y. Nojima, Yiping Liu, C. Loo, H. Ishibuchi","doi":"10.1109/SSCI44817.2019.9003098","DOIUrl":null,"url":null,"abstract":"Adaptive Resonance Theory (ART)-based growing self-organizing clustering is one of the most promising approaches for unsupervised topological clustering. In our previous study, we proposed a Topological Correntropy induced metric based ART (TCA) and shown its superior performance. However, TCA suffers from a data-dependent parameter and a complicated network creation process which lead to inefficient learning. This paper aims to solve problems of TCA by implementing an automatic parameter specification mechanism and simplifying a learning algorithm. Experimental results show that the proposed algorithm in this paper successfully solved the above problems.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"19 1","pages":"2215-2221"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Adaptive Resonance Theory (ART)-based growing self-organizing clustering is one of the most promising approaches for unsupervised topological clustering. In our previous study, we proposed a Topological Correntropy induced metric based ART (TCA) and shown its superior performance. However, TCA suffers from a data-dependent parameter and a complicated network creation process which lead to inefficient learning. This paper aims to solve problems of TCA by implementing an automatic parameter specification mechanism and simplifying a learning algorithm. Experimental results show that the proposed algorithm in this paper successfully solved the above problems.
基于相关熵诱导度量的快速拓扑自适应共振理论
基于自适应共振理论(ART)的生长自组织聚类是一种最有前途的无监督拓扑聚类方法。在我们之前的研究中,我们提出了一种基于拓扑相关熵诱导度量的ART (TCA),并展示了其优越的性能。然而,TCA的缺点是参数依赖于数据,网络创建过程复杂,导致学习效率低下。本文旨在通过实现自动参数指定机制和简化学习算法来解决TCA的问题。实验结果表明,本文提出的算法成功地解决了上述问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信