Characterization of Biharmonic Hypersurface

Q4 Mathematics
S. Srivastava, K. Sood, K. Srivastava
{"title":"Characterization of Biharmonic Hypersurface","authors":"S. Srivastava, K. Sood, K. Srivastava","doi":"10.15421/242211","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional. The condition of biharmonicity for non-degenerate hypersurfaces in $\\mathbb{Q}^{2m+1}$ is investigated for both cases: either the characteristic vector field of $\\mathbb{Q}^{2m+1}$ is the unit normal vector field to the hypersurface or it belongs to the tangent space of the hypersurface. Some relevant examples are also illustrated.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional. The condition of biharmonicity for non-degenerate hypersurfaces in $\mathbb{Q}^{2m+1}$ is investigated for both cases: either the characteristic vector field of $\mathbb{Q}^{2m+1}$ is the unit normal vector field to the hypersurface or it belongs to the tangent space of the hypersurface. Some relevant examples are also illustrated.
双调和超曲面的表征
本文的主要目的是研究拟parasasakian流形$\mathbb{Q}^{2m+1}$上的双调和超曲面。双调和超曲面是双调和映射的特殊情况,双调和映射是生物能泛函的临界点。研究了$\mathbb{Q}^{2m+1}$中非简并超曲面双谐性的条件:$\mathbb{Q}^{2m+1}$的特征向量场是超曲面的单位法向量场或属于超曲面的切空间。并举例说明了一些相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信