Revisiting Groeneveld’s approach to the virial expansion

S. Jansen
{"title":"Revisiting Groeneveld’s approach to the virial expansion","authors":"S. Jansen","doi":"10.1063/5.0030148","DOIUrl":null,"url":null,"abstract":"A generalized version of Groeneveld's convergence criterion for the virial expansion and generating functionals for weighted $2$-connected graphs is proven. The criterion works for inhomogeneous systems and yields bounds for the density expansions of the correlation functions $\\rho_s$ (a.k.a. distribution functions or factorial moment measures) of grand-canonical Gibbs measures with pairwise interactions. The proof is based on recurrence relations for graph weights related to the Kirkwood-Salsburg integral equation for correlation functions. The proof does not use an inversion of the density-activity expansion, however a Moebius inversion on the lattice of set partitions enters the derivation of the recurrence relations.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0030148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A generalized version of Groeneveld's convergence criterion for the virial expansion and generating functionals for weighted $2$-connected graphs is proven. The criterion works for inhomogeneous systems and yields bounds for the density expansions of the correlation functions $\rho_s$ (a.k.a. distribution functions or factorial moment measures) of grand-canonical Gibbs measures with pairwise interactions. The proof is based on recurrence relations for graph weights related to the Kirkwood-Salsburg integral equation for correlation functions. The proof does not use an inversion of the density-activity expansion, however a Moebius inversion on the lattice of set partitions enters the derivation of the recurrence relations.
再次回顾格林内菲尔德的病毒式扩张方法
证明了加权$2$连通图的虚展开和生成泛函的广义版Groeneveld收敛准则。该准则适用于非齐次系统,并给出具有成对相互作用的大正则吉布斯测度的相关函数$\rho_s$(又称分布函数或阶乘矩测度)的密度展开的界。该证明是基于与相关函数的Kirkwood-Salsburg积分方程相关的图权的递归关系。该证明没有使用密度-活度展开的反转,而是在集合分区的格上使用莫比乌斯反转来推导递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信