{"title":"Revisiting Groeneveld’s approach to the virial expansion","authors":"S. Jansen","doi":"10.1063/5.0030148","DOIUrl":null,"url":null,"abstract":"A generalized version of Groeneveld's convergence criterion for the virial expansion and generating functionals for weighted $2$-connected graphs is proven. The criterion works for inhomogeneous systems and yields bounds for the density expansions of the correlation functions $\\rho_s$ (a.k.a. distribution functions or factorial moment measures) of grand-canonical Gibbs measures with pairwise interactions. The proof is based on recurrence relations for graph weights related to the Kirkwood-Salsburg integral equation for correlation functions. The proof does not use an inversion of the density-activity expansion, however a Moebius inversion on the lattice of set partitions enters the derivation of the recurrence relations.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0030148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A generalized version of Groeneveld's convergence criterion for the virial expansion and generating functionals for weighted $2$-connected graphs is proven. The criterion works for inhomogeneous systems and yields bounds for the density expansions of the correlation functions $\rho_s$ (a.k.a. distribution functions or factorial moment measures) of grand-canonical Gibbs measures with pairwise interactions. The proof is based on recurrence relations for graph weights related to the Kirkwood-Salsburg integral equation for correlation functions. The proof does not use an inversion of the density-activity expansion, however a Moebius inversion on the lattice of set partitions enters the derivation of the recurrence relations.