{"title":"Formation and Performance Evaluation of Colloidal Dispersion Gels prepared using Sulfonated Polyacrylamides and Chromium (III) Acetate","authors":"R. Rahimi, A. S. Dehaghani","doi":"10.22059/JCHPE.2020.308813.1328","DOIUrl":null,"url":null,"abstract":"Using a sulfonated polyacrylamide (SPAM) and Cr3+, a new colloidal dispersion gel (CDG) was prepared. The viscosity of the CDG samples in different crosslinker concentrations and brine compositions was measured. The results showed that CDGs approach a Newtonian-like behavior in high crosslinker concentrations and salinities, signifying that they possess more rigid, less flexible particles that can be used to block some of the pore throats of the high-permeability layers. Therefore, three coreflood tests were performed and the retention of the polymers and the final RRF (residual resistance factor) were determined. Although CDGs showed a lower tendency to be adsorbed onto the rocks, they caused drastically higher RRF values (caused higher permeability reductions). Thus, it can be concluded that CDGs are superior compared to normal polymer solutions in modifying the permeability. Moreover, changing the post-flood fluid from brine to distilled water caused the RRF to decrease, hence weaker effect on the permeability.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2020.308813.1328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Using a sulfonated polyacrylamide (SPAM) and Cr3+, a new colloidal dispersion gel (CDG) was prepared. The viscosity of the CDG samples in different crosslinker concentrations and brine compositions was measured. The results showed that CDGs approach a Newtonian-like behavior in high crosslinker concentrations and salinities, signifying that they possess more rigid, less flexible particles that can be used to block some of the pore throats of the high-permeability layers. Therefore, three coreflood tests were performed and the retention of the polymers and the final RRF (residual resistance factor) were determined. Although CDGs showed a lower tendency to be adsorbed onto the rocks, they caused drastically higher RRF values (caused higher permeability reductions). Thus, it can be concluded that CDGs are superior compared to normal polymer solutions in modifying the permeability. Moreover, changing the post-flood fluid from brine to distilled water caused the RRF to decrease, hence weaker effect on the permeability.