{"title":"New Modified Anderson Darling Goodness of Fit Test for Lognormal and Gamma distributions","authors":"J. Neamvonk, Bumrungsak Phuenaree","doi":"10.24203/ajas.v10i6.7124","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.","PeriodicalId":8497,"journal":{"name":"Asian Journal of Applied Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ajas.v10i6.7124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.