Effective Noise Removal and Unified Model of Hybrid Feature Space Optimization for Automated Cardiac Anomaly Detection Using Phonocardiogarm Signals

A. Ukil, S. Bandyopadhyay, Chetanya Puri, Rituraj Singh, A. Pal
{"title":"Effective Noise Removal and Unified Model of Hybrid Feature Space Optimization for Automated Cardiac Anomaly Detection Using Phonocardiogarm Signals","authors":"A. Ukil, S. Bandyopadhyay, Chetanya Puri, Rituraj Singh, A. Pal","doi":"10.1109/ICASSP.2018.8461765","DOIUrl":null,"url":null,"abstract":"In this paper, we present completely automated cardiac anomaly detection for remote screening of cardio-vascular abnormality using Phonocardiogram (PCG) or heart sound signal. Even though PCG contains significant and vital cardiac health information and cardiac abnormality signature, the presence of substantial noise does not guarantee highly effective analysis of cardiac condition. Our proposed method intelligently identifies and eliminates noisy PCG signal and consequently detects pathological abnormality condition. We further present a unified model of hybrid feature selection method. Our feature selection model is diversity optimized and cost-sensitive over conditional likelihood of the training and validation examples that maximizes classification model performance. We employ multi-stage hybrid feature selection process involving first level filter method and second level wrapper method. We achieve 85% detection accuracy by using publicly available MIT-Physionet challenge 2016 datasets consisting of more than 3000 annotated PCG signals.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"62 1","pages":"866-870"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present completely automated cardiac anomaly detection for remote screening of cardio-vascular abnormality using Phonocardiogram (PCG) or heart sound signal. Even though PCG contains significant and vital cardiac health information and cardiac abnormality signature, the presence of substantial noise does not guarantee highly effective analysis of cardiac condition. Our proposed method intelligently identifies and eliminates noisy PCG signal and consequently detects pathological abnormality condition. We further present a unified model of hybrid feature selection method. Our feature selection model is diversity optimized and cost-sensitive over conditional likelihood of the training and validation examples that maximizes classification model performance. We employ multi-stage hybrid feature selection process involving first level filter method and second level wrapper method. We achieve 85% detection accuracy by using publicly available MIT-Physionet challenge 2016 datasets consisting of more than 3000 annotated PCG signals.
心音信号自动心脏异常检测的有效降噪和混合特征空间优化统一模型
在本文中,我们提出了完全自动化的心脏异常检测,用于利用心音图(PCG)或心音信号远程筛查心血管异常。尽管PCG包含重要的心脏健康信息和心脏异常特征,但大量噪声的存在并不能保证对心脏状况进行高效分析。该方法能够智能地识别和消除PCG信号中的噪声,从而检测出病理异常情况。进一步提出了一种统一模型的混合特征选择方法。我们的特征选择模型对多样性进行了优化,并且对训练和验证示例的条件似然具有成本敏感性,从而最大化了分类模型的性能。采用多阶段混合特征选择方法,包括一级滤波法和二级包装法。通过使用公开可用的MIT-Physionet challenge 2016数据集(包含3000多个带标注的PCG信号),我们实现了85%的检测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信