Results on the domination number and the total domination number of Lucas cubes

Zülfükar Saygı
{"title":"Results on the domination number and the total domination number of Lucas cubes","authors":"Zülfükar Saygı","doi":"10.26493/1855-3974.2028.cb4","DOIUrl":null,"url":null,"abstract":"Lucas cubes are the special subgraphs of Fibonacci cubes. For small dimensions, their domination numbers are obtained by direct search or integer linear programming. For larger dimensions some bounds on these numbers are given. In this work, we present the exact values of total domination number of small dimensional Lucas cubes and present optimization problems obtained from the degree information of Lucas cubes, whose solutions give better lower bounds on the domination numbers and total domination numbers of Lucas cubes.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"40 1","pages":"25-35"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2028.cb4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lucas cubes are the special subgraphs of Fibonacci cubes. For small dimensions, their domination numbers are obtained by direct search or integer linear programming. For larger dimensions some bounds on these numbers are given. In this work, we present the exact values of total domination number of small dimensional Lucas cubes and present optimization problems obtained from the degree information of Lucas cubes, whose solutions give better lower bounds on the domination numbers and total domination numbers of Lucas cubes.
关于Lucas立方体控制数和总控制数的结果
卢卡斯立方体是斐波那契立方体的特殊子图。对于小维,其支配数可通过直接搜索或整数线性规划得到。对于较大的维度,给出了这些数的一些边界。本文给出了小维Lucas立方体的总控制数的精确值,并给出了由Lucas立方体的度信息得到的优化问题,其解给出了Lucas立方体的控制数和总控制数的较好下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信