Ensemble-Based Learning in Indoor Localization: A Hybrid Approach

Simon Tewes, A. Ahmad, Jaber Kakar, U. M. Thanthrige, Stefan Roth, A. Sezgin
{"title":"Ensemble-Based Learning in Indoor Localization: A Hybrid Approach","authors":"Simon Tewes, A. Ahmad, Jaber Kakar, U. M. Thanthrige, Stefan Roth, A. Sezgin","doi":"10.1109/VTCFall.2019.8891416","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with indoor localization based on multiple-antenna channel measurements. Indoor localization is an active area of research due to its great importance in many applications. We propose a hybrid algorithm which combines the benefits of two techniques, namely signal processing and machine learning. We validate our algorithm based on real measurements acquired from two practical setups. Our approach shows a very promising performance in the IEEE CTW 2019 - Positioning Algorithm Competition where the algorithm achieves an accuracy within RMSE values below 10 cm. We further build a setup in another indoor environment, where the algorithm still proves a very good performance compared to state-of-the art techniques used in indoor localization tasks.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we are concerned with indoor localization based on multiple-antenna channel measurements. Indoor localization is an active area of research due to its great importance in many applications. We propose a hybrid algorithm which combines the benefits of two techniques, namely signal processing and machine learning. We validate our algorithm based on real measurements acquired from two practical setups. Our approach shows a very promising performance in the IEEE CTW 2019 - Positioning Algorithm Competition where the algorithm achieves an accuracy within RMSE values below 10 cm. We further build a setup in another indoor environment, where the algorithm still proves a very good performance compared to state-of-the art techniques used in indoor localization tasks.
基于集成的室内定位学习:一种混合方法
本文主要研究基于多天线信道测量的室内定位问题。由于其在许多应用中的重要性,室内定位是一个活跃的研究领域。我们提出了一种混合算法,它结合了两种技术的优点,即信号处理和机器学习。我们根据两个实际装置的实际测量结果验证了我们的算法。我们的方法在IEEE CTW 2019 -定位算法竞赛中显示出非常有前景的性能,该算法在RMSE值低于10厘米的范围内实现了精度。我们进一步在另一个室内环境中建立了一个设置,与室内定位任务中使用的最先进技术相比,该算法仍然证明了非常好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信