E. Chow, Himanshu Joshi, A. Wilats, D. Thompson, Kevin Cotton, Sujith Nair, Clint Warren, Brian Tomayko, A. Adkins, A. Shen, M. Morris, Bryan Byerman
{"title":"Commercial development of RF medical implantable devices","authors":"E. Chow, Himanshu Joshi, A. Wilats, D. Thompson, Kevin Cotton, Sujith Nair, Clint Warren, Brian Tomayko, A. Adkins, A. Shen, M. Morris, Bryan Byerman","doi":"10.1109/IMWS-BIO.2013.6756251","DOIUrl":null,"url":null,"abstract":"Radio frequency (RF) wireless communication development has unique challenges for medical implantable applications stemming from the electromagnetic (EM) interactions with the surrounding biological tissue. There are, however, numerous benefits of higher frequency RF communication, including improved speed, range, reliability, and ease of use, that have resulted in a rapid growth of RF in implantable devices. There has also been significant development of numerous network protocols and FCC allocations of bands targeted specifically for these applications. Thorough survey and analysis of patient and physician use cases is critical for steering the design and development phases to maximize a product's chance of success. Sufficient modeling, representative and comprehensive testing utilizing anechoic chambers and RF phantom recipes, iterative design methods, and in vivo studies are necessary for successful development of a high-frequency RF Class III medical device targeted for commercial release.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"60 30 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Radio frequency (RF) wireless communication development has unique challenges for medical implantable applications stemming from the electromagnetic (EM) interactions with the surrounding biological tissue. There are, however, numerous benefits of higher frequency RF communication, including improved speed, range, reliability, and ease of use, that have resulted in a rapid growth of RF in implantable devices. There has also been significant development of numerous network protocols and FCC allocations of bands targeted specifically for these applications. Thorough survey and analysis of patient and physician use cases is critical for steering the design and development phases to maximize a product's chance of success. Sufficient modeling, representative and comprehensive testing utilizing anechoic chambers and RF phantom recipes, iterative design methods, and in vivo studies are necessary for successful development of a high-frequency RF Class III medical device targeted for commercial release.