Quantale-valued Cauchy tower spaces and completeness

IF 0.6 Q3 MATHEMATICS
G. Jäger, T. Ahsanullah
{"title":"Quantale-valued Cauchy tower spaces and completeness","authors":"G. Jäger, T. Ahsanullah","doi":"10.4995/agt.2021.15610","DOIUrl":null,"url":null,"abstract":"Generalizing the concept of a probabilistic Cauchy space, we introduce quantale-valued Cauchy tower spaces. These spaces encompass quantale-valued metric spaces, quantale-valued uniform (convergence) tower spaces and quantale-valued convergence tower groups. For special choices of the quantale, classical and probabilistic metric spaces are covered and probabilistic and approach Cauchy spaces arise. We also study completeness and completion in this setting and establish a connection to the Cauchy completeness of a quantale-valued metric space.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2021.15610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing the concept of a probabilistic Cauchy space, we introduce quantale-valued Cauchy tower spaces. These spaces encompass quantale-valued metric spaces, quantale-valued uniform (convergence) tower spaces and quantale-valued convergence tower groups. For special choices of the quantale, classical and probabilistic metric spaces are covered and probabilistic and approach Cauchy spaces arise. We also study completeness and completion in this setting and establish a connection to the Cauchy completeness of a quantale-valued metric space.
量子值柯西塔空间与完备性
推广了概率柯西空间的概念,引入了量子值柯西塔空间。这些空间包括量子值度量空间、量子值一致(收敛)塔空间和量子值收敛塔群。对于量子化的特殊选择,涵盖了经典度量空间和概率度量空间,并产生了概率和接近柯西空间。我们还研究了这种情况下的完备性和补全性,并建立了与量子值度量空间的柯西完备性的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信