Neural Fine-Gray: Monotonic neural networks for competing risks

ArXiv Pub Date : 2023-05-11 DOI:10.48550/arXiv.2305.06703
V. Jeanselme, Changwon Yoon, Brian D. M. Tom, J. Barrett
{"title":"Neural Fine-Gray: Monotonic neural networks for competing risks","authors":"V. Jeanselme, Changwon Yoon, Brian D. M. Tom, J. Barrett","doi":"10.48550/arXiv.2305.06703","DOIUrl":null,"url":null,"abstract":"Time-to-event modelling, known as survival analysis, differs from standard regression as it addresses censoring in patients who do not experience the event of interest. Despite competitive performances in tackling this problem, machine learning methods often ignore other competing risks that preclude the event of interest. This practice biases the survival estimation. Extensions to address this challenge often rely on parametric assumptions or numerical estimations leading to sub-optimal survival approximations. This paper leverages constrained monotonic neural networks to model each competing survival distribution. This modelling choice ensures the exact likelihood maximisation at a reduced computational cost by using automatic differentiation. The effectiveness of the solution is demonstrated on one synthetic and three medical datasets. Finally, we discuss the implications of considering competing risks when developing risk scores for medical practice.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.06703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Time-to-event modelling, known as survival analysis, differs from standard regression as it addresses censoring in patients who do not experience the event of interest. Despite competitive performances in tackling this problem, machine learning methods often ignore other competing risks that preclude the event of interest. This practice biases the survival estimation. Extensions to address this challenge often rely on parametric assumptions or numerical estimations leading to sub-optimal survival approximations. This paper leverages constrained monotonic neural networks to model each competing survival distribution. This modelling choice ensures the exact likelihood maximisation at a reduced computational cost by using automatic differentiation. The effectiveness of the solution is demonstrated on one synthetic and three medical datasets. Finally, we discuss the implications of considering competing risks when developing risk scores for medical practice.
神经细灰色:竞争风险的单调神经网络
时间到事件模型,即生存分析,不同于标准回归,因为它处理的是对没有经历感兴趣事件的患者的审查。尽管机器学习方法在解决这个问题方面表现出色,但它往往忽略了排除感兴趣事件的其他竞争风险。这种做法会使生存估计产生偏差。解决这一挑战的扩展通常依赖于参数假设或导致次优生存近似的数值估计。本文利用约束单调神经网络对各竞争生存分布进行建模。这种建模选择通过使用自动微分确保在减少计算成本的情况下实现精确的似然最大化。在一个合成数据集和三个医疗数据集上验证了该解决方案的有效性。最后,我们讨论的影响考虑竞争风险时,为医疗实践开发风险评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信