{"title":"Entropy theory for sectional hyperbolic flows","authors":"Maria José Pacifico , Fan Yang , Jiagang Yang","doi":"10.1016/j.anihpc.2020.10.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We use entropy theory as a new tool to study sectional hyperbolic flows in any dimension. We show that for </span><span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span><span> flows, every sectional hyperbolic set Λ is entropy expansive, and the </span>topological entropy varies continuously with the flow. Furthermore, if Λ is Lyapunov stable, then it has positive entropy; in addition, if Λ is a chain recurrent class, then it contains a periodic orbit. As a corollary, we prove that for </span><span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> generic flows, every Lorenz-like class is an attractor.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.001","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 20
Abstract
We use entropy theory as a new tool to study sectional hyperbolic flows in any dimension. We show that for flows, every sectional hyperbolic set Λ is entropy expansive, and the topological entropy varies continuously with the flow. Furthermore, if Λ is Lyapunov stable, then it has positive entropy; in addition, if Λ is a chain recurrent class, then it contains a periodic orbit. As a corollary, we prove that for generic flows, every Lorenz-like class is an attractor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.