Proficiency Comparison of LADTree and REPTree Classifiers for Credit Risk Forecast

L. Devasena
{"title":"Proficiency Comparison of LADTree and REPTree Classifiers for Credit Risk Forecast","authors":"L. Devasena","doi":"10.5121/IJCSA.2015.5104","DOIUrl":null,"url":null,"abstract":"Predicting the Credit Defaulter is a perilous task of Financial Industries like Banks. Ascertaining non-payer before giving loan is a significant and conflict-ridden task of the Banker. Classification techniques are the better choice for predictive analysis like finding the claimant, whether he/she is an unpretentious customer or a cheat. Defining the outstanding classifier is a risky assignment for any industrialist like a banker. This allow computer science researchers to drill down efficient research works through evaluating different classifiers and finding out the best classifier for such predictive problems. This research work investigates the productivity of LADTree Classifier and REPTree Classifier for the credit risk prediction and compares their fitness through various measures. German credit dataset has been taken and used to predict the credit risk with a help of open source machine learning tool.","PeriodicalId":8468,"journal":{"name":"arXiv: Learning","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCSA.2015.5104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Predicting the Credit Defaulter is a perilous task of Financial Industries like Banks. Ascertaining non-payer before giving loan is a significant and conflict-ridden task of the Banker. Classification techniques are the better choice for predictive analysis like finding the claimant, whether he/she is an unpretentious customer or a cheat. Defining the outstanding classifier is a risky assignment for any industrialist like a banker. This allow computer science researchers to drill down efficient research works through evaluating different classifiers and finding out the best classifier for such predictive problems. This research work investigates the productivity of LADTree Classifier and REPTree Classifier for the credit risk prediction and compares their fitness through various measures. German credit dataset has been taken and used to predict the credit risk with a help of open source machine learning tool.
LADTree和REPTree分类器在信用风险预测中的熟练程度比较
对银行等金融行业来说,预测信用违约者是一项危险的任务。在发放贷款前确定非付款人是银行的一项重要且充满冲突的任务。分类技术是预测分析的更好选择,比如找到索赔人,无论他/她是一个朴实的顾客还是一个骗子。对于银行家这样的实业家来说,定义杰出的分类器是一项有风险的任务。这使得计算机科学研究人员可以通过评估不同的分类器来深入研究有效的研究工作,并为此类预测问题找到最佳分类器。本研究考察了LADTree分类器和REPTree分类器用于信用风险预测的生产率,并通过各种度量比较了它们的适应度。利用德国信用数据集,借助开源机器学习工具进行信用风险预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信