{"title":"On the use of Fourier Features-Physics Informed Neural Networks (FF-PINN) for forward and inverse fluid mechanics problems","authors":"O. Sallam, M. Fürth","doi":"10.1177/14750902231166424","DOIUrl":null,"url":null,"abstract":"Physics Informed Neural Networks (PINN), a deep learning tool, has recently become an effective method for solving inverse Partial Differential Equations (PDEs) where the boundary/initial conditions are not well defined and only noisy sparse measurements sampled in the domain exist. PINN, and other Neural Networks, tends to converge to the low frequency solution in a field that has multiple frequency scales, this is known as spectral bias. For PINN this happens when solving PDEs that exhibit periodic behavior spatially and temporally with multi frequency scales. Previous studies suggested that Fourier Features-Neural Networks (FF-NN) can be used to overcome the spectral bias problem. They proposed the Multi Scale-Spatio Temporal-Fourier Features-Physics Informed Neural Networks (MS-ST-FF-PINN) to overcome the spectral bias problem in PDEs solved by PINN. This has been evaluated on basic PDEs such as Poisson, wave and Gray-Scott equations. In this paper we take MS-ST-FF-PINN a step further by applying it to the incompressible Navier-Stokes equations. Furthermore, a comparative analysis between the PINN and the MS-ST-FF-PINN architectures solution accuracy, the learnt frequency components and the rate of convergence to the correct solution is included. To show this three test cases are shown (a)-Forward time independent double-lid-driven cavity, (b)-Inverse time independent free surface estimation of Kelvin wave pattern, and (c)-Inverse 2D time-dependent turbulent Von Karman vortex shedding interaction downstream of multiple cylinders. The results show that MS-ST-FF-PINN is better at learning low and high frequency components synchronously at early training iterations compared to the PINN architecture that does not learn the high frequency components even after multiple iteration numbers such as the Kelvin wave pattern and the Karman vortex shedding cases. However, for the third test case, the MS-ST-FF-PINN architecture showed a discontinuity for the temporal prediction of the pressure field due to over-fitting.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231166424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Physics Informed Neural Networks (PINN), a deep learning tool, has recently become an effective method for solving inverse Partial Differential Equations (PDEs) where the boundary/initial conditions are not well defined and only noisy sparse measurements sampled in the domain exist. PINN, and other Neural Networks, tends to converge to the low frequency solution in a field that has multiple frequency scales, this is known as spectral bias. For PINN this happens when solving PDEs that exhibit periodic behavior spatially and temporally with multi frequency scales. Previous studies suggested that Fourier Features-Neural Networks (FF-NN) can be used to overcome the spectral bias problem. They proposed the Multi Scale-Spatio Temporal-Fourier Features-Physics Informed Neural Networks (MS-ST-FF-PINN) to overcome the spectral bias problem in PDEs solved by PINN. This has been evaluated on basic PDEs such as Poisson, wave and Gray-Scott equations. In this paper we take MS-ST-FF-PINN a step further by applying it to the incompressible Navier-Stokes equations. Furthermore, a comparative analysis between the PINN and the MS-ST-FF-PINN architectures solution accuracy, the learnt frequency components and the rate of convergence to the correct solution is included. To show this three test cases are shown (a)-Forward time independent double-lid-driven cavity, (b)-Inverse time independent free surface estimation of Kelvin wave pattern, and (c)-Inverse 2D time-dependent turbulent Von Karman vortex shedding interaction downstream of multiple cylinders. The results show that MS-ST-FF-PINN is better at learning low and high frequency components synchronously at early training iterations compared to the PINN architecture that does not learn the high frequency components even after multiple iteration numbers such as the Kelvin wave pattern and the Karman vortex shedding cases. However, for the third test case, the MS-ST-FF-PINN architecture showed a discontinuity for the temporal prediction of the pressure field due to over-fitting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.