Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer

F. Shi, R. Patton
{"title":"Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer","authors":"F. Shi, R. Patton","doi":"10.3182/20140824-6-ZA-1003.01383","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes an augmented Proportional plus Derivative (PD) state estimator to achieve simultaneous system state and fault estimation of descriptor systems. Descriptor systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system model is subject to model uncertainty, external disturbance or sensor noise. The H ∞ performance is adopted to improve the estimator robustness subject to disturbance, sensor noise or model uncertainty. The estimator gains are obtained via an LMI approach. An example is studied to show the usefulness and effectiveness of the proposed approach.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"75 1","pages":"8006-8011"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.01383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Abstract This paper proposes an augmented Proportional plus Derivative (PD) state estimator to achieve simultaneous system state and fault estimation of descriptor systems. Descriptor systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system model is subject to model uncertainty, external disturbance or sensor noise. The H ∞ performance is adopted to improve the estimator robustness subject to disturbance, sensor noise or model uncertainty. The estimator gains are obtained via an LMI approach. An example is studied to show the usefulness and effectiveness of the proposed approach.
基于增广PD观测器的广义系统同步状态和故障估计
提出了一种增广比例加导数(PD)状态估计器,用于同时估计广义系统的状态和故障。首先考虑无模型不确定性的广义系统,然后讨论系统模型受模型不确定性、外部干扰或传感器噪声影响的一般情况。采用H∞性能来提高估计器对干扰、传感器噪声或模型不确定性的鲁棒性。估计器增益是通过LMI方法获得的。算例表明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信