Jiashu Chen, Lu Ye, D. Titz, F. Gianesello, R. Pilard, A. Cathelin, F. Ferrero, C. Luxey, A. Niknejad
{"title":"A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining","authors":"Jiashu Chen, Lu Ye, D. Titz, F. Gianesello, R. Pilard, A. Cathelin, F. Ferrero, C. Luxey, A. Niknejad","doi":"10.1109/ISSCC.2013.6487713","DOIUrl":null,"url":null,"abstract":"With fast-growing demand for high-speed mobile communications and highly saturated spectral usage below 10GHz, mm-Wave frequency bands are emerging as the key playground for future high-data-rate wireless standards. Recent years have witnessed vast technology development on V-band (60GHz) Wireless Personal Area Networks (WPAN) and E-band (80GHz) point-to-point cellular backhauls. However, existing integrated CMOS mm-Wave solutions have relatively poor energy efficiency, especially for the transmitter (TX). This is mainly due to the use of traditional Class-A Power Amplifiers (PAs) that provide good linearity but suffer from low efficiency. In addition, the efficiency of Class-A PAs drop dramatically at power back-offs, making these transmitters even less efficient when conveying non-constant envelope signals. State-of-the-art mm-Wave Class-A PAs show less than 5% efficiency at 6dB back-off [1,2].","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"7 1","pages":"232-233"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
With fast-growing demand for high-speed mobile communications and highly saturated spectral usage below 10GHz, mm-Wave frequency bands are emerging as the key playground for future high-data-rate wireless standards. Recent years have witnessed vast technology development on V-band (60GHz) Wireless Personal Area Networks (WPAN) and E-band (80GHz) point-to-point cellular backhauls. However, existing integrated CMOS mm-Wave solutions have relatively poor energy efficiency, especially for the transmitter (TX). This is mainly due to the use of traditional Class-A Power Amplifiers (PAs) that provide good linearity but suffer from low efficiency. In addition, the efficiency of Class-A PAs drop dramatically at power back-offs, making these transmitters even less efficient when conveying non-constant envelope signals. State-of-the-art mm-Wave Class-A PAs show less than 5% efficiency at 6dB back-off [1,2].