Resource Allocation based on Graph Neural Networks in Vehicular Communications

Ziyan He, Liang Wang, Hao Ye, Geoffrey Y. Li, B. Juang
{"title":"Resource Allocation based on Graph Neural Networks in Vehicular Communications","authors":"Ziyan He, Liang Wang, Hao Ye, Geoffrey Y. Li, B. Juang","doi":"10.1109/GLOBECOM42002.2020.9322537","DOIUrl":null,"url":null,"abstract":"In this article, we investigate spectrum allocation in vehicle-to-everything (V2X) network. We first express the V2X network into a graph, where each vehicle-to-vehicle (V2V) link is a node in the graph. We apply a graph neural network (GNN) to learn the low-dimensional feature of each node based on the graph information. According to the learned feature, multi-agent reinforcement learning (RL) is used to make spectrum allocation. Deep Q-network is utilized to learn to optimize the sum capacity of the V2X network. Simulation results show that the proposed allocation scheme can achieve near-optimal performance.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this article, we investigate spectrum allocation in vehicle-to-everything (V2X) network. We first express the V2X network into a graph, where each vehicle-to-vehicle (V2V) link is a node in the graph. We apply a graph neural network (GNN) to learn the low-dimensional feature of each node based on the graph information. According to the learned feature, multi-agent reinforcement learning (RL) is used to make spectrum allocation. Deep Q-network is utilized to learn to optimize the sum capacity of the V2X network. Simulation results show that the proposed allocation scheme can achieve near-optimal performance.
基于图神经网络的车载通信资源分配
在本文中,我们研究了车辆对一切(V2X)网络中的频谱分配。我们首先将V2X网络表示成一个图,其中每个车对车(V2V)链接是图中的一个节点。基于图信息,应用图神经网络(GNN)学习每个节点的低维特征。根据学习到的特征,采用多智能体强化学习(RL)进行频谱分配。利用Deep Q-network学习优化V2X网络的总容量。仿真结果表明,所提出的分配方案能够达到接近最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信