Classification of Arabica and Robusta coffee using electronic nose

Dike Bayu Magfira, R. Sarno
{"title":"Classification of Arabica and Robusta coffee using electronic nose","authors":"Dike Bayu Magfira, R. Sarno","doi":"10.1109/ICOIACT.2018.8350725","DOIUrl":null,"url":null,"abstract":"The ability of nose as the sense of smell, causing high sensitivity to the aroma of coffee. The electronic nose can be applied to recognize the aroma of coffee as an objective measure of coffee gas. The detection of Arabica and Robusta coffee was diluted for 20 minutes and resulted in 288 gas data. From the data displayed on the Arduino produces different signal values. From the results of sensor data displayed on the Arduino will be made aroma classification based signal data. Classification of Arabica coffee aroma and Robusta coffee aroma is done with Support Vector Machine (SVM) and Perceptron method. Accuracy results obtained with the SVM method is 71% and Perceptron 57%. Based on the accuracy value obtained, SVM method can recognize Arabica Coffee and Robusta with better results.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"15 1","pages":"645-650"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The ability of nose as the sense of smell, causing high sensitivity to the aroma of coffee. The electronic nose can be applied to recognize the aroma of coffee as an objective measure of coffee gas. The detection of Arabica and Robusta coffee was diluted for 20 minutes and resulted in 288 gas data. From the data displayed on the Arduino produces different signal values. From the results of sensor data displayed on the Arduino will be made aroma classification based signal data. Classification of Arabica coffee aroma and Robusta coffee aroma is done with Support Vector Machine (SVM) and Perceptron method. Accuracy results obtained with the SVM method is 71% and Perceptron 57%. Based on the accuracy value obtained, SVM method can recognize Arabica Coffee and Robusta with better results.
用电子鼻对阿拉比卡和罗布斯塔咖啡进行分类
鼻子作为嗅觉的能力,导致对咖啡的香气高度敏感。电子鼻可以作为咖啡气体的客观测量手段,用于识别咖啡的香气。阿拉比卡和罗布斯塔咖啡的检测稀释20分钟,得到288个气体数据。从Arduino上显示的数据中产生不同的信号值。从传感器数据的结果显示到Arduino上,将基于香气的信号数据进行分类。采用支持向量机和感知机方法对阿拉比卡咖啡和罗布斯塔咖啡香气进行分类。SVM方法的准确率为71%,Perceptron方法的准确率为57%。基于得到的精度值,SVM方法可以识别阿拉比卡咖啡和罗布斯塔咖啡,效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信