F. Alvarez , Magnoux , F.Ramôa Ribeiro , M. Guisnet
{"title":"Transformation of cyclohexanone on PtHZSM5 catalysts — reaction scheme","authors":"F. Alvarez , Magnoux , F.Ramôa Ribeiro , M. Guisnet","doi":"10.1016/0304-5102(94)00052-2","DOIUrl":null,"url":null,"abstract":"<div><p>The transformation of cyclohexanone was carried out on PtHZSM5 catalysts under the following conditions: flow reactor, 473 K, pressures of cyclohexanone and hydrogen equal to 0.25 and 0.75 bar respectively. Six families of products were identified by GC or GC-MS analysis: C<sub>6</sub> cyclic hydrocarbons <strong>1</strong>, C<sub>12</sub> bicyclic hydrocarbons <strong>2</strong> (e.g., cyclohexylcyclohexene), cyclohexenylcyclohexanone <strong>3</strong>, cyclohexylcyclohexanone <strong>4</strong>, phenylcyclohexanone <strong>5</strong>, tricyclic ketones <strong>6</strong> (e.g., biscyclohexenylcyclohexanone). A reaction scheme is proposed to explain the formation of these products. Compounds <strong>1</strong> would result from the following steps: hydrogenation of cyclohexanone (probably in the enol form) on Pt sites, dehydration of cyclohexanol on the acid sites, hydrogenation or dehydrogenation of cyclohexene on Pt sites. Compounds <strong>2</strong> are mainly formed through successive transformations of <strong>4</strong>: hydrogenation, dehydration…; <strong>3</strong> results from aldolisation of cyclohexanone followed by dehydration of the resulting alcohol, <strong>4</strong> from hydrogenation of <strong>3</strong>, <strong>5</strong> from dehydrogenation of <strong>3</strong>. The compounds <strong>6</strong> result from aldolisation of <strong>3</strong> with cyclohexanone followed by dehydration, hydrogenation and dehydrogenation steps. The dehydration of alcohols is much more rapid than aldolisation and hydrogenation—dehydrogenation steps. On a 0.2 PtHZSM5 catalyst with a platinum dispersion greater than 70%, aldolisation is slower than hydrogenation—dehydrogenation steps. The deactivation of the catalyst affects more the acid sites than the metallic ones.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"92 1","pages":"Pages 67-79"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)00052-2","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 26
Abstract
The transformation of cyclohexanone was carried out on PtHZSM5 catalysts under the following conditions: flow reactor, 473 K, pressures of cyclohexanone and hydrogen equal to 0.25 and 0.75 bar respectively. Six families of products were identified by GC or GC-MS analysis: C6 cyclic hydrocarbons 1, C12 bicyclic hydrocarbons 2 (e.g., cyclohexylcyclohexene), cyclohexenylcyclohexanone 3, cyclohexylcyclohexanone 4, phenylcyclohexanone 5, tricyclic ketones 6 (e.g., biscyclohexenylcyclohexanone). A reaction scheme is proposed to explain the formation of these products. Compounds 1 would result from the following steps: hydrogenation of cyclohexanone (probably in the enol form) on Pt sites, dehydration of cyclohexanol on the acid sites, hydrogenation or dehydrogenation of cyclohexene on Pt sites. Compounds 2 are mainly formed through successive transformations of 4: hydrogenation, dehydration…; 3 results from aldolisation of cyclohexanone followed by dehydration of the resulting alcohol, 4 from hydrogenation of 3, 5 from dehydrogenation of 3. The compounds 6 result from aldolisation of 3 with cyclohexanone followed by dehydration, hydrogenation and dehydrogenation steps. The dehydration of alcohols is much more rapid than aldolisation and hydrogenation—dehydrogenation steps. On a 0.2 PtHZSM5 catalyst with a platinum dispersion greater than 70%, aldolisation is slower than hydrogenation—dehydrogenation steps. The deactivation of the catalyst affects more the acid sites than the metallic ones.