Leakage Detection and Localization of Water Pipeline Using Multi-features and Adaptive Time Delay Estimation

Q4 Engineering
Yang Liu, Ze Chen, Zhongyan Liu, Xin Liu, Guochen Yu, Shun Na
{"title":"Leakage Detection and Localization of Water Pipeline Using Multi-features and Adaptive Time Delay Estimation","authors":"Yang Liu, Ze Chen, Zhongyan Liu, Xin Liu, Guochen Yu, Shun Na","doi":"10.46300/9106.2022.16.135","DOIUrl":null,"url":null,"abstract":"The leakage of water in pipelines severely affects the environment and economy. However, there are limitations in the effectiveness of existing leak detection and localization techniques and methodologies. In this paper, we propose a novel leakage detection and localization method based on the multiple time-frequency features, a neural network, and an adaptive time delay estimation algorithm. First, we use spectral subtraction and wavelet denoising to reduce the effects of noise. In addition, to ensure and improve the accuracy of leakage detection in complex realistic environments, we propose the use of multi time-frequency features that can comprehensively represent the leak signal and make the neural network more robust to train a radial basis function (RBF)neural network to detect the leak signal. Further, we extract multiple features of the leakage signal and input into the RBF neural network to train. Moreover, to prevent the impulsive components of environmental noise and improve localization accuracy, we further propose the use of a fractional lower-order statistics (FLOS) based adaptive time delay estimation algorithm to estimate the time delay and locate the leakage. The simulation results show that the detection and localization performance of the proposed method is superior to those of existing schemes.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The leakage of water in pipelines severely affects the environment and economy. However, there are limitations in the effectiveness of existing leak detection and localization techniques and methodologies. In this paper, we propose a novel leakage detection and localization method based on the multiple time-frequency features, a neural network, and an adaptive time delay estimation algorithm. First, we use spectral subtraction and wavelet denoising to reduce the effects of noise. In addition, to ensure and improve the accuracy of leakage detection in complex realistic environments, we propose the use of multi time-frequency features that can comprehensively represent the leak signal and make the neural network more robust to train a radial basis function (RBF)neural network to detect the leak signal. Further, we extract multiple features of the leakage signal and input into the RBF neural network to train. Moreover, to prevent the impulsive components of environmental noise and improve localization accuracy, we further propose the use of a fractional lower-order statistics (FLOS) based adaptive time delay estimation algorithm to estimate the time delay and locate the leakage. The simulation results show that the detection and localization performance of the proposed method is superior to those of existing schemes.
基于多特征和自适应时滞估计的管道泄漏检测与定位
管道漏水严重影响了环境和经济。然而,现有的泄漏检测和定位技术和方法的有效性存在局限性。本文提出了一种基于多时频特征、神经网络和自适应时延估计算法的泄漏检测和定位方法。首先,我们使用谱减法和小波去噪来降低噪声的影响。此外,为了保证和提高复杂现实环境下泄漏检测的准确性,我们提出利用能够全面表征泄漏信号的多时频特征,增强神经网络的鲁棒性,训练径向基函数(RBF)神经网络来检测泄漏信号。进一步,我们提取泄漏信号的多个特征,并将其输入RBF神经网络进行训练。此外,为了防止环境噪声的脉冲分量,提高定位精度,我们进一步提出了一种基于分数阶低阶统计量(FLOS)的自适应时延估计算法来估计时延并定位泄漏。仿真结果表明,该方法的检测和定位性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信