Qualitative behavior of a two-dimensional discrete-time prey–predator model

IF 0.9 Q3 MATHEMATICS, APPLIED
Messaoud Berkal, Juan F. Navarro
{"title":"Qualitative behavior of a two-dimensional discrete-time prey–predator model","authors":"Messaoud Berkal,&nbsp;Juan F. Navarro","doi":"10.1002/cmm4.1193","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss the qualitative behavior of a two-dimensional discrete-time prey–predator model. This system is the result of the application of a nonstandard difference scheme to a system of differential equations for a prey–predator model including intraspecific competition of prey population. In particular, we evaluate the fixed points of the system and study their local asymptotic stability. We also prove the existence of a Neimark–Sacker bifurcation.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1193","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

In this article, we discuss the qualitative behavior of a two-dimensional discrete-time prey–predator model. This system is the result of the application of a nonstandard difference scheme to a system of differential equations for a prey–predator model including intraspecific competition of prey population. In particular, we evaluate the fixed points of the system and study their local asymptotic stability. We also prove the existence of a Neimark–Sacker bifurcation.

Abstract Image

二维离散猎物-捕食者模型的定性行为
本文讨论了二维离散食饵-捕食者模型的定性行为。该系统是将非标准差分格式应用于包含猎物种群种内竞争的食饵-捕食者模型微分方程组的结果。特别地,我们评估了系统的不动点,并研究了它们的局部渐近稳定性。我们还证明了neimmark - sacker分岔的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信