Statistics of wavelet coefficients for sparse self-similar images

J. Fageot, E. Bostan, M. Unser
{"title":"Statistics of wavelet coefficients for sparse self-similar images","authors":"J. Fageot, E. Bostan, M. Unser","doi":"10.1109/ICIP.2014.7026230","DOIUrl":null,"url":null,"abstract":"We study the statistics of wavelet coefficients of non-Gaussian images, focusing mainly on the behaviour at coarse scales. We assume that an image can be whitened by a fractional Laplacian operator, which is consistent with an ∥ω∥-γ spectral decay. In other words, we model images as sparse and self-similar stochastic processes within the framework of generalised innovation models. We show that the wavelet coefficients at coarse scales are asymptotically Gaussian even if the prior model for fine scales is sparse. We further refine our analysis by deriving the theoretical evolution of the cumulants of wavelet coefficients across scales. Especially, the evolution of the kurtosis supplies a theoretical prediction for the Gaussianity level at each scale. Finally, we provide simulations and experiments that support our theoretical predictions.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"6096-6100"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the statistics of wavelet coefficients of non-Gaussian images, focusing mainly on the behaviour at coarse scales. We assume that an image can be whitened by a fractional Laplacian operator, which is consistent with an ∥ω∥-γ spectral decay. In other words, we model images as sparse and self-similar stochastic processes within the framework of generalised innovation models. We show that the wavelet coefficients at coarse scales are asymptotically Gaussian even if the prior model for fine scales is sparse. We further refine our analysis by deriving the theoretical evolution of the cumulants of wavelet coefficients across scales. Especially, the evolution of the kurtosis supplies a theoretical prediction for the Gaussianity level at each scale. Finally, we provide simulations and experiments that support our theoretical predictions.
稀疏自相似图像的小波系数统计
我们研究了非高斯图像的小波系数统计,主要关注其在粗尺度下的行为。我们假设图像可以通过分数阶拉普拉斯算子进行白化,这与∥ω∥-γ谱衰减是一致的。换句话说,我们在广义创新模型的框架内将图像建模为稀疏和自相似的随机过程。我们证明了小波系数在粗尺度下是渐近高斯的,即使精细尺度下的先验模型是稀疏的。通过推导小波系数在不同尺度上的累积量的理论演化,我们进一步完善了我们的分析。特别是峰度的演化为各尺度的高斯性水平提供了理论预测。最后,我们提供了模拟和实验来支持我们的理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信