{"title":"Strengthening the Comparison Theorem and Kolmogorov Inequality in the Asymmetric Case","authors":"V. Kofanov, K.D. Sydorovych","doi":"10.15421/242204","DOIUrl":null,"url":null,"abstract":"We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:$$\\|x^{(k)}_{\\pm }\\|_{\\infty}\\le \\frac{\\|\\varphi _{r-k}( \\cdot \\;;\\alpha ,\\beta )_\\pm \\|_{\\infty }}{E_0(\\varphi _r( \\cdot \\;;\\alpha ,\\beta ))^{1-k/r}_{\\infty }}|||x|||^{1-k/r}_{\\infty}\\|\\alpha^{-1}x_+^{(r)}+\\beta^{-1}x_-^{(r)}\\|_\\infty^{k/r}$$for functions $x \\in L^r_{\\infty }(\\mathbb{R})$, where$$|||x|||_\\infty:=\\frac12 \\sup_{\\alpha ,\\beta}\\{ |x(\\beta)-x(\\alpha)|:x'(t)\\neq 0 \\;\\;\\forallt\\in (\\alpha ,\\beta) \\}$$$k,r \\in \\mathbb{N}$, $k 0$, $\\varphi_r( \\cdot \\;;\\alpha ,\\beta )_r$ is the asymmetric perfect spline of Euler of order $r$ and $E_0(x)_\\infty $ is the best uniform approximation of the function $x$ by constants.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:$$\|x^{(k)}_{\pm }\|_{\infty}\le \frac{\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }}{E_0(\varphi _r( \cdot \;;\alpha ,\beta ))^{1-k/r}_{\infty }}|||x|||^{1-k/r}_{\infty}\|\alpha^{-1}x_+^{(r)}+\beta^{-1}x_-^{(r)}\|_\infty^{k/r}$$for functions $x \in L^r_{\infty }(\mathbb{R})$, where$$|||x|||_\infty:=\frac12 \sup_{\alpha ,\beta}\{ |x(\beta)-x(\alpha)|:x'(t)\neq 0 \;\;\forallt\in (\alpha ,\beta) \}$$$k,r \in \mathbb{N}$, $k 0$, $\varphi_r( \cdot \;;\alpha ,\beta )_r$ is the asymmetric perfect spline of Euler of order $r$ and $E_0(x)_\infty $ is the best uniform approximation of the function $x$ by constants.