{"title":"On the algebraization of Henkin-type second-order logic","authors":"Miklós Ferenczi","doi":"10.1002/malq.202100057","DOIUrl":null,"url":null,"abstract":"<p>There is an extensive literature related to the algebraization of first-order logic. But the algebraization of full second-order logic, or Henkin-type second-order logic, has hardly been researched. The question arises: what kind of set algebra is the algebraic version of a Henkin-type model of second-order logic? The question is investigated within the framework of the theory of cylindric algebras. The answer is: a kind of cylindric-relativized diagonal restricted set algebra. And the class of the subdirect products of these set algebras is the algebraization of Henkin-type second-order logic. It is proved that the algebraization of a complete calculus of the Henkin-type second-order logic is a class of a kind of diagonal restricted cylindric algebras. Furthermore, the connection with the non-standard enlargements of standard complete second-order structures is investigated.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There is an extensive literature related to the algebraization of first-order logic. But the algebraization of full second-order logic, or Henkin-type second-order logic, has hardly been researched. The question arises: what kind of set algebra is the algebraic version of a Henkin-type model of second-order logic? The question is investigated within the framework of the theory of cylindric algebras. The answer is: a kind of cylindric-relativized diagonal restricted set algebra. And the class of the subdirect products of these set algebras is the algebraization of Henkin-type second-order logic. It is proved that the algebraization of a complete calculus of the Henkin-type second-order logic is a class of a kind of diagonal restricted cylindric algebras. Furthermore, the connection with the non-standard enlargements of standard complete second-order structures is investigated.