Cauchy problem for the non-newtonian viscous incompressible fluid

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
M. Pokorný
{"title":"Cauchy problem for the non-newtonian viscous incompressible fluid","authors":"M. Pokorný","doi":"10.21136/am.1996.134320","DOIUrl":null,"url":null,"abstract":"We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\\tau ^V(\\mathbb{e}) = \\tau (\\mathbb{e}) - 2\\mu _1 \\Delta \\mathbb{e}$, where the nonlinear function $\\tau (\\mathbb{e})$ satisfies $\\tau _{ij}(\\mathbb{e})e_{ij} \\ge c|\\mathbb{e}|^p$ or $\\tau _{ij}(\\mathbb{e})e_{ij} \\ge c(|\\mathbb{e}|^2+|\\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \\frac{3n}{n+2}$, its uniqueness and regularity for $p \\ge 1 + \\frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$.","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"70 1","pages":"169-201"},"PeriodicalIF":0.6000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.1996.134320","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 92

Abstract

We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$, where the nonlinear function $\tau (\mathbb{e})$ satisfies $\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$ or $\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \frac{3n}{n+2}$, its uniqueness and regularity for $p \ge 1 + \frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$.
非牛顿粘性不可压缩流体的柯西问题
本文研究了具有应力张量$\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$的粘性部分的非牛顿不可压缩流体的Cauchy问题,其中非线性函数$\tau (\mathbb{e})$满足$\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$或$\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$。首先对双极流体模型进行了研究,证明了两种模型$p > 1$弱解的存在性、唯一性和规律性。然后,在高粘度消失$\mu _1$条件下,考虑单极流体的柯西问题。对于第一个模型,证明了$p > \frac{3n}{n+2}$弱解的存在性,证明了$p \ge 1 + \frac{2n}{n+2}$弱解的唯一性和正则性。对于第二种模型,证明了$p>1$弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信