{"title":"Scaling laws for properties of random graphs that grow via successive combination","authors":"P. Grindrod","doi":"10.1093/comnet/cnac024","DOIUrl":null,"url":null,"abstract":"\n We consider undirected graphs that grow through the successive combination of component sub-graphs. For any well-behaved functions defined for such graphs, taking values in a Banach space, we show that there must exist a scaling law applicable when successive copies of the same component graph are combined. Crucially, we extend the approach introduced in previous work to the successive combination of component random sub-graphs. We illustrate this by generalizing the preferential attachment operation for the combination of stochastic block models. We discuss a further wide range of random graph combination operators to which this theory now applies, indicating the ubiquity of growth scaling laws (and asymptotic decay scaling laws) within applications, where the modules are quite distinct, yet may be considered as instances drawn from the same random graph. This is a type of statistically self-similar growth process, as opposed to a deterministic growth process incorporating exact copies of the same motif, and it represents a natural, partially random, growth processes for graphs observed in the analysis of social and technology contexts.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"6 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider undirected graphs that grow through the successive combination of component sub-graphs. For any well-behaved functions defined for such graphs, taking values in a Banach space, we show that there must exist a scaling law applicable when successive copies of the same component graph are combined. Crucially, we extend the approach introduced in previous work to the successive combination of component random sub-graphs. We illustrate this by generalizing the preferential attachment operation for the combination of stochastic block models. We discuss a further wide range of random graph combination operators to which this theory now applies, indicating the ubiquity of growth scaling laws (and asymptotic decay scaling laws) within applications, where the modules are quite distinct, yet may be considered as instances drawn from the same random graph. This is a type of statistically self-similar growth process, as opposed to a deterministic growth process incorporating exact copies of the same motif, and it represents a natural, partially random, growth processes for graphs observed in the analysis of social and technology contexts.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network