Multilayer Decision-Based Fuzzy Logic Model to Navigate Mobile Robot in Unknown Dynamic Environments

IF 1.3 Q2 MATHEMATICS, APPLIED
Farah Kamil, Mohammed Yasser Moghrabiah
{"title":"Multilayer Decision-Based Fuzzy Logic Model to Navigate Mobile Robot in Unknown Dynamic Environments","authors":"Farah Kamil, Mohammed Yasser Moghrabiah","doi":"10.1080/16168658.2021.2019432","DOIUrl":null,"url":null,"abstract":"The investigation into mobile robot navigation under uncertain dynamic environments is of great significance. This paper seeks to solve the current problems which are the difficulty to plan in indeterminate ever-changing environments, the problem of optimality, failure in complex situations, and the problem of predicting the obstacle velocity vector. The objective of this study is to propose a multilayer decision-based fuzzy logic model to find the solution for robot navigation through a safe path while preventing any types of barriers and to understand the non-collision mobile robots’ movement in an unknown dynamic environment. In this study, the prediction and priority rules of a multilayer decision are used by the fuzzy logic controller to improve the quality of the next position with regard to its path length, safety, and runtime. The results of comparison studies revealed a considerable improvement in failure rate and path length. Outcomes show that the suggested method displays attractive features, for instance, great stability, great optimality, zero failure rates, and low running time. The average path length for all test environments is 13.11 with 0.47 a standard deviation that provides 89% of an average optimality rate. The average running time is about 5.31 s with a 0.25 standard deviation.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"31 2 1","pages":"51 - 73"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.2019432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

The investigation into mobile robot navigation under uncertain dynamic environments is of great significance. This paper seeks to solve the current problems which are the difficulty to plan in indeterminate ever-changing environments, the problem of optimality, failure in complex situations, and the problem of predicting the obstacle velocity vector. The objective of this study is to propose a multilayer decision-based fuzzy logic model to find the solution for robot navigation through a safe path while preventing any types of barriers and to understand the non-collision mobile robots’ movement in an unknown dynamic environment. In this study, the prediction and priority rules of a multilayer decision are used by the fuzzy logic controller to improve the quality of the next position with regard to its path length, safety, and runtime. The results of comparison studies revealed a considerable improvement in failure rate and path length. Outcomes show that the suggested method displays attractive features, for instance, great stability, great optimality, zero failure rates, and low running time. The average path length for all test environments is 13.11 with 0.47 a standard deviation that provides 89% of an average optimality rate. The average running time is about 5.31 s with a 0.25 standard deviation.
基于多层决策的模糊逻辑模型在未知动态环境中导航移动机器人
研究不确定动态环境下的移动机器人导航问题具有重要意义。本文旨在解决当前在不确定多变环境下的规划困难问题、最优性问题、复杂情况下的失效问题以及障碍物速度矢量的预测问题。本研究的目的是提出一种基于多层决策的模糊逻辑模型,以寻找机器人在不受任何类型障碍物的情况下通过安全路径的解决方案,并了解在未知动态环境中无碰撞移动机器人的运动。在本研究中,模糊逻辑控制器使用多层决策的预测和优先级规则来提高下一个位置在路径长度,安全性和运行时间方面的质量。比较研究的结果显示,失败率和路径长度有相当大的改善。结果表明,该方法具有稳定性好、最优性好、故障率为零、运行时间短等特点。所有测试环境的平均路径长度为13.11,标准偏差为0.47,提供了89%的平均最优率。平均运行时间约为5.31 s,标准差为0.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信