Dimensional Effect in Magnetoresistance in the Three-Layer Magnetic Films

Yu.M. Shabelnyk, L. Dekhtyaruk, D. Saltykov, I. Shpetnyi, A. Chornous, Y. Shkurdoda, A. P. Kharchenko, V. Virchenko
{"title":"Dimensional Effect in Magnetoresistance in the Three-Layer Magnetic Films","authors":"Yu.M. Shabelnyk, L. Dekhtyaruk, D. Saltykov, I. Shpetnyi, A. Chornous, Y. Shkurdoda, A. P. Kharchenko, V. Virchenko","doi":"10.1109/NAP51885.2021.9568401","DOIUrl":null,"url":null,"abstract":"Based on the generalized Dieny formula [1], [2], a theoretical analysis of the dependence of the magnetoresistance ratio $\\delta$, which quantities the effect of giant magnetoresistance (GMR) in a magnetically ordered three-layer film with a thickness $D=d_{m1}+d_{n}+d_{m2}, (d_{m1}$ and dm2 - thickness of the basic and covering magnetic layers of the metal, respectively, dn thickness of the non-magnetic layer), on the thickness of the covering magnetic layer dm2 was performed. It was shown that in the case of performing inequalities $d_{m2}\\lt \\lt (d_{n}+d_{m1}), (d_{m2}\\gt \\gt (d_{n}+d_{m1}))$ the value of $\\delta$ is negligible due to shunting the resistance of the covering layer with the resistances of the basic layer and the non-magnetic layer (shunting the resistance of the basic layer and the non-magnetic layer with the resistance of the covering magnetic layer). If the equality $d_{m2}=(d_{n}+d_{m1})$ is met, the value of $\\delta$ becomes the maximum (amplitude) value due to the absence of a shunting effect.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"170 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the generalized Dieny formula [1], [2], a theoretical analysis of the dependence of the magnetoresistance ratio $\delta$, which quantities the effect of giant magnetoresistance (GMR) in a magnetically ordered three-layer film with a thickness $D=d_{m1}+d_{n}+d_{m2}, (d_{m1}$ and dm2 - thickness of the basic and covering magnetic layers of the metal, respectively, dn thickness of the non-magnetic layer), on the thickness of the covering magnetic layer dm2 was performed. It was shown that in the case of performing inequalities $d_{m2}\lt \lt (d_{n}+d_{m1}), (d_{m2}\gt \gt (d_{n}+d_{m1}))$ the value of $\delta$ is negligible due to shunting the resistance of the covering layer with the resistances of the basic layer and the non-magnetic layer (shunting the resistance of the basic layer and the non-magnetic layer with the resistance of the covering magnetic layer). If the equality $d_{m2}=(d_{n}+d_{m1})$ is met, the value of $\delta$ becomes the maximum (amplitude) value due to the absence of a shunting effect.
三层磁性薄膜中磁阻的尺寸效应
基于广义Dieny公式[1],[2],理论分析了厚度为D=d_{m1}+d_{n}+d_{m2}、(d_{m1}$和dm2 -金属基层和覆盖层厚度,分别为非磁性层厚度dn)的磁有序三层薄膜中巨磁电阻(GMR)对覆盖层厚度dm2的依赖关系。结果表明,在执行不等式$d_{m2}\lt \lt (d_{n}+d_{m1}), (d_{m2}\gt \gt (d_{n}+d_{m1}))$的情况下,$\delta$的值可以忽略不计,这是因为覆盖层的电阻与基础层和非磁性层的电阻并联(将基础层和非磁性层的电阻与覆盖层的磁性层的电阻并联)。如果满足等式$d_{m2}=(d_{n}+d_{m1})$,则由于没有分流效应,$\delta$的值成为最大(振幅)值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信