An In-Situ Sliding Window Approximate Inner-Product Scheme Based on Parallel Distributed Arithmetic for Ultra-Low Power Fault-Tolerant Applications

Dominick Rizk, Rodrigue Rizk, Frederic Rizk, Ashok Kumar
{"title":"An In-Situ Sliding Window Approximate Inner-Product Scheme Based on Parallel Distributed Arithmetic for Ultra-Low Power Fault-Tolerant Applications","authors":"Dominick Rizk, Rodrigue Rizk, Frederic Rizk, Ashok Kumar","doi":"10.1109/MWSCAS47672.2021.9531886","DOIUrl":null,"url":null,"abstract":"Approximate computing (AC) provides an efficient solution for reducing power, area, and complexity of digital systems. When backed with distributed arithmetic (DA), AC leverages the ability to implement ultra-efficient inner-product units in terms of area, power, and delay. Such units can be used in any inherently resilient application. This paper presents a novel scheme of approximate inner-product based on parallel DA for low-power fault-tolerant applications backed with a novel in-situ sliding window algorithm. Our model eliminates the need for an explicit error correction scheme, which further reduces the overhead while improving the accuracy. The experimental results show that our model achieves a state-of-the-art performance in terms of power delay product (PDP), area power product (APP) with a reduction of 39.26% and 48.83%, respectively.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"11 1","pages":"503-506"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Approximate computing (AC) provides an efficient solution for reducing power, area, and complexity of digital systems. When backed with distributed arithmetic (DA), AC leverages the ability to implement ultra-efficient inner-product units in terms of area, power, and delay. Such units can be used in any inherently resilient application. This paper presents a novel scheme of approximate inner-product based on parallel DA for low-power fault-tolerant applications backed with a novel in-situ sliding window algorithm. Our model eliminates the need for an explicit error correction scheme, which further reduces the overhead while improving the accuracy. The experimental results show that our model achieves a state-of-the-art performance in terms of power delay product (PDP), area power product (APP) with a reduction of 39.26% and 48.83%, respectively.
基于并行分布算法的超低功耗容错原位滑动窗近似内积方案
近似计算(AC)为降低数字系统的功耗、面积和复杂度提供了一种有效的解决方案。当有分布式算术(DA)支持时,AC利用在面积、功率和延迟方面实现超高效内积单元的能力。这样的单元可以用于任何具有固有弹性的应用程序。本文提出了一种基于并行数据分析的低功耗容错近似内积方案,并提出了一种新的原位滑动窗算法。我们的模型消除了对显式纠错方案的需要,这进一步降低了开销,同时提高了准确性。实验结果表明,该模型在功率延迟积(PDP)和面积功率积(APP)方面达到了最先进的性能,分别降低了39.26%和48.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信