Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs

Emmett Breen, Renee Mirka, Zichen Wang, David P. Williamson
{"title":"Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs","authors":"Emmett Breen, Renee Mirka, Zichen Wang, David P. Williamson","doi":"10.1137/1.9781611977585.ch6","DOIUrl":null,"url":null,"abstract":"This paper revisits the 2-approximation algorithm for $k$-MST presented by Garg in light of a recent paper of Paul et al.. In the $k$-MST problem, the goal is to return a tree spanning $k$ vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the $k$-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"9 1","pages":"56-68"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977585.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper revisits the 2-approximation algorithm for $k$-MST presented by Garg in light of a recent paper of Paul et al.. In the $k$-MST problem, the goal is to return a tree spanning $k$ vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the $k$-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.
图中k-MST问题的Garg 2-逼近算法重述
本文根据Paul等人最近的一篇论文,重新审视了Garg提出的$k$-MST的2逼近算法。在$k$-MST问题中,目标是返回一棵树,它生成$k$个顶点,并且总边代价最小。Paul等人扩展了Garg的原始对偶子程序,以改进预算奖励旅行推销员和最小生成树问题的近似比率。我们遵循他们的算法和分析,提供一个更清晰的Garg结果。此外,我们引入了核的新概念,它可以更容易地可视化算法的各个阶段,并更清楚地理解修剪阶段。其他值得注意的更新包括提出k -MST问题的线性规划公式,包括伪代码,用更简单的中性集概念取代Garg使用的着色方案,并提供显式的势函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信