Entanglement characterization by single-photon counting with random noise

A. Czerwinski
{"title":"Entanglement characterization by single-photon counting with random noise","authors":"A. Czerwinski","doi":"10.26421/QIC22.1-2-1","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the problem of entanglement characterization by polarization measurements combined with maximum likelihood estimation (MLE). A realistic scenario is considered with measurement results distorted by random experimental errors. In particular, by imposing unitary rotations acting on the measurement operators, we can test the performance of the tomographic technique versus the amount of noise. Then, dark counts are introduced to explore the efficiency of the framework in a multi-dimensional noise scenario. The concurrence is used as a figure of merit to quantify how well entanglement is preserved through noisy measurements. Quantum fidelity is computed to quantify the accuracy of state reconstruction. The results of numerical simulations are depicted on graphs and discussed.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"27 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC22.1-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we investigate the problem of entanglement characterization by polarization measurements combined with maximum likelihood estimation (MLE). A realistic scenario is considered with measurement results distorted by random experimental errors. In particular, by imposing unitary rotations acting on the measurement operators, we can test the performance of the tomographic technique versus the amount of noise. Then, dark counts are introduced to explore the efficiency of the framework in a multi-dimensional noise scenario. The concurrence is used as a figure of merit to quantify how well entanglement is preserved through noisy measurements. Quantum fidelity is computed to quantify the accuracy of state reconstruction. The results of numerical simulations are depicted on graphs and discussed.
随机噪声下单光子计数的纠缠特性
在本文中,我们研究了用偏振测量结合最大似然估计(MLE)来表征纠缠的问题。考虑了测量结果受随机实验误差影响的实际情况。特别是,通过施加作用于测量算子的幺正旋转,我们可以测试层析成像技术的性能与噪声量的关系。然后,引入暗计数来探讨该框架在多维噪声场景下的效率。并发度是用来量化通过噪声测量保持纠缠的程度。通过计算量子保真度来量化状态重建的精度。数值模拟结果用图形表示,并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信