{"title":"Algorithm 1004","authors":"Jeremy Reizenstein, Benjamin Graham","doi":"10.1145/3371237","DOIUrl":null,"url":null,"abstract":"Iterated-integral signatures and log signatures are sequences calculated from a path that characterizes its shape. They originate from the work of K. T. Chen and have become important through Terry Lyons’s theory of differential equations driven by rough paths, which is an important developing area of stochastic analysis. They have applications in statistics and machine learning, where there can be a need to calculate finite parts of them quickly for many paths. We introduce the signature and the most basic information (displacement and signed areas) that it contains. We present algorithms for efficiently calculating these signatures. For log signatures this requires consideration of the structure of free Lie algebras. We benchmark the performance of the algorithms. The methods are implemented in C++ and released as a Python extension package, which also supports differentiation. In combination with a machine learning library (Tensorflow, PyTorch, or Theano), this allows end-to-end learning of neural networks involving signatures.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"26 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Iterated-integral signatures and log signatures are sequences calculated from a path that characterizes its shape. They originate from the work of K. T. Chen and have become important through Terry Lyons’s theory of differential equations driven by rough paths, which is an important developing area of stochastic analysis. They have applications in statistics and machine learning, where there can be a need to calculate finite parts of them quickly for many paths. We introduce the signature and the most basic information (displacement and signed areas) that it contains. We present algorithms for efficiently calculating these signatures. For log signatures this requires consideration of the structure of free Lie algebras. We benchmark the performance of the algorithms. The methods are implemented in C++ and released as a Python extension package, which also supports differentiation. In combination with a machine learning library (Tensorflow, PyTorch, or Theano), this allows end-to-end learning of neural networks involving signatures.
迭代积分签名和日志签名是从表征其形状的路径计算的序列。它们起源于K. T. Chen的工作,并通过Terry Lyons的粗糙路径驱动微分方程理论而变得重要,这是随机分析的一个重要发展领域。它们在统计学和机器学习中有应用,在这些领域,可能需要对许多路径快速计算它们的有限部分。我们介绍了签名及其包含的最基本信息(位移和签名区域)。我们提出了有效计算这些签名的算法。对于日志签名,这需要考虑自由李代数的结构。我们对算法的性能进行基准测试。这些方法在c++中实现,并作为Python扩展包发布,该扩展包也支持差异化。结合机器学习库(Tensorflow, PyTorch或Theano),这允许涉及签名的神经网络的端到端学习。