Gaussian transforms modeling and the estimation of distributional regression functions

R. Spady, S. Stouli
{"title":"Gaussian transforms modeling and the estimation of distributional regression functions","authors":"R. Spady, S. Stouli","doi":"10.47004/wp.cem.2020.5320","DOIUrl":null,"url":null,"abstract":"Conditional distribution functions are important statistical objects for the analysis of a wide class of problems in econometrics and statistics. We propose flexible Gaussian representations for conditional distribution functions and give a concave likelihood formulation for their global estimation. We obtain solutions that satisfy the monotonicity property of conditional distribution functions, including under general misspecification and in finite samples. A Lasso-type penalized version of the corresponding maximum likelihood estimator is given that expands the scope of our estimation analysis to models with sparsity. Inference and estimation results for conditional distribution, quantile and density functions implied by our representations are provided and illustrated with an empirical example and simulations.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47004/wp.cem.2020.5320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conditional distribution functions are important statistical objects for the analysis of a wide class of problems in econometrics and statistics. We propose flexible Gaussian representations for conditional distribution functions and give a concave likelihood formulation for their global estimation. We obtain solutions that satisfy the monotonicity property of conditional distribution functions, including under general misspecification and in finite samples. A Lasso-type penalized version of the corresponding maximum likelihood estimator is given that expands the scope of our estimation analysis to models with sparsity. Inference and estimation results for conditional distribution, quantile and density functions implied by our representations are provided and illustrated with an empirical example and simulations.
高斯变换建模和分布回归函数的估计
条件分布函数是分析计量经济学和统计学中一类广泛问题的重要统计对象。我们提出了条件分布函数的灵活高斯表示,并给出了其全局估计的凹似然公式。我们得到了满足条件分布函数单调性的解,包括在一般错配和有限样本情况下的解。给出了相应的最大似然估计量的lasso型惩罚版本,将我们的估计分析范围扩展到具有稀疏性的模型。给出了条件分布、分位数和密度函数的推理和估计结果,并通过实例和模拟进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信