Robust algorithm to learn rules for classification: A fault diagnosis case study

IF 1.2 Q3 ENGINEERING, MECHANICAL
A. Balaji, V. Sugumaran
{"title":"Robust algorithm to learn rules for classification: A fault diagnosis case study","authors":"A. Balaji, V. Sugumaran","doi":"10.5937/fme2303338b","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are used for building classifier models. The rule-based decision tree classifiers are popular ones. However, the performance of the decision tree classifier varies with hyperparameter tuning. The optimum hyperparameter values are obtained using either optimization algorithms or trial and error methods. The present study utilizes the MODLEM algorithm to overcome the drawbacks accounted for by decision tree algorithms. Eliminating hyperparameter tuning and producing results closer to standard decision tree algorithms makes MODLEM a robust classification algorithm. The robustness of the MODLEM algorithm is illustrated with the fault diagnosis case study. The case study is faults diagnosis of an automobile suspension system using vibration signals acquired at various fault conditions.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2303338b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms are used for building classifier models. The rule-based decision tree classifiers are popular ones. However, the performance of the decision tree classifier varies with hyperparameter tuning. The optimum hyperparameter values are obtained using either optimization algorithms or trial and error methods. The present study utilizes the MODLEM algorithm to overcome the drawbacks accounted for by decision tree algorithms. Eliminating hyperparameter tuning and producing results closer to standard decision tree algorithms makes MODLEM a robust classification algorithm. The robustness of the MODLEM algorithm is illustrated with the fault diagnosis case study. The case study is faults diagnosis of an automobile suspension system using vibration signals acquired at various fault conditions.
鲁棒分类规则学习算法:故障诊断案例研究
机器学习算法用于构建分类器模型。基于规则的决策树分类器是比较流行的分类器。然而,决策树分类器的性能随超参数调优而变化。采用优化算法或试错法获得最优超参数值。本研究利用MODLEM算法克服了决策树算法的缺点。消除了超参数调优,产生的结果更接近标准决策树算法,使MODLEM成为一种鲁棒的分类算法。通过故障诊断实例分析,说明了MODLEM算法的鲁棒性。以某汽车悬架系统为例,利用在不同故障条件下采集的振动信号进行故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信