On Sets of Points in General Position That Lie on a Cubic Curve in the Plane

Pub Date : 2021-10-12 DOI:10.1556/012.2022.01527
Mehdi Makhul, R. Pinchasi
{"title":"On Sets of Points in General Position That Lie on a Cubic Curve in the Plane","authors":"Mehdi Makhul, R. Pinchasi","doi":"10.1556/012.2022.01527","DOIUrl":null,"url":null,"abstract":"Let P be a set of n points in general position in the plane. Let R be a set of points disjoint from P such that for every x, y € P the line through x and y contains a point in R. We show that if \n \n is contained in a cubic curve c in the plane, then P has a special property with respect to the natural group structure on c. That is, P is contained in a coset of a subgroup H of c of cardinality at most |R|.\n We use the same approach to show a similar result in the case where each of B and G is a set of n points in general position in the plane and every line through a point in B and a point in G passes through a point in R. This provides a partial answer to a problem of Karasev.\n The bound \n \n is best possible at least for part of our results. Our extremal constructions provide a counterexample to an old conjecture attributed to Jamison about point sets that determine few directions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let P be a set of n points in general position in the plane. Let R be a set of points disjoint from P such that for every x, y € P the line through x and y contains a point in R. We show that if is contained in a cubic curve c in the plane, then P has a special property with respect to the natural group structure on c. That is, P is contained in a coset of a subgroup H of c of cardinality at most |R|. We use the same approach to show a similar result in the case where each of B and G is a set of n points in general position in the plane and every line through a point in B and a point in G passes through a point in R. This provides a partial answer to a problem of Karasev. The bound is best possible at least for part of our results. Our extremal constructions provide a counterexample to an old conjecture attributed to Jamison about point sets that determine few directions.
分享
查看原文
平面上三次曲线上一般位置点的集合
设P是平面上一般位置上n个点的集合。设R是与P不相交的点的集合,使得对于每一个x, y - P,经过x和y的直线在R中包含一个点。我们证明如果包含在平面上的三次曲线c中,那么P对于c上的自然群结构有一个特殊的性质,即P包含在基数不超过|R|的c的子群H的余集中。我们用同样的方法来显示一个类似的结果,在这种情况下,B和G中的每个点都是平面上一般位置上的n个点的集合,每条线都经过B中的一个点,G中的一个点经过r中的一个点。这提供了卡拉塞夫问题的部分答案。这个界至少对我们的部分结果来说是最好的。我们的极值结构提供了一个反例,反驳了Jamison关于点集决定很少方向的老猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信