{"title":"Mathematical Model and Characteristics of the Induction Motor with a Power Supply from a Current Source","authors":"V. Malyar, A. Malyar","doi":"10.21122/1029-7448-2021-64-5-421-434","DOIUrl":null,"url":null,"abstract":". Methods and mathematical models for studying the modes and characteristics of the three-phase squirrel-cage induction motor with the power supplied to the stator winding from the current source have been developed. The specific features of the algorithms for calculating transients, steady-state modes and static characteristics are discussed. The results of the calculation of the processes and characteristics of induction motors with the power supply from the current source and the voltage source are compared. Steady-state and dynamic modes cannot be studied with a sufficient adequacy based on the known equivalent circuits; this requires using dynamic parameters, which are the elements of the Jacobi matrix of the system of equations of the electromechanical equilibrium. In the mathematical model, the state equations of the stator and rotor circuits are written in the fixed two-phase coordinate system. The transients are described by the system of differential equations of electrical equilibrium of the transformed circuits of the motor and the equation of the rotor motion and the steady-state modes by the system of algebraic equation. The developed algorithms are based on the mathematical model of the motor in which the magnetic path saturation and skin effect in the squirrel-cage bars are taken into consideration. The magnetic path saturation is accounted for by using the real characteristics of magnetizing by the main magnetic flux and leakage fluxes of the stator and rotor windings. Based on them, the differential inductances are calculated, which are the elements of the Jacobi matrix of the system of equations describing the dynamic modes and static characteristic. In order to take into account the skin effect in the squirrel-cage rotor, each bar along with the squirrel-cage rings is divided height-wise into several elements. As a result, the mathematical model considers the equivalent circuits of the rotor with different parameters which are connected by mutual inductance. The non-linear system of algebraic equations of electrical equilibrium describing the steady-state modes is solved by the parameter continuation method. To calculate the static characteristics, the differential method combined with the Newton’s Iterative refinement is used.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2021-64-5-421-434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
. Methods and mathematical models for studying the modes and characteristics of the three-phase squirrel-cage induction motor with the power supplied to the stator winding from the current source have been developed. The specific features of the algorithms for calculating transients, steady-state modes and static characteristics are discussed. The results of the calculation of the processes and characteristics of induction motors with the power supply from the current source and the voltage source are compared. Steady-state and dynamic modes cannot be studied with a sufficient adequacy based on the known equivalent circuits; this requires using dynamic parameters, which are the elements of the Jacobi matrix of the system of equations of the electromechanical equilibrium. In the mathematical model, the state equations of the stator and rotor circuits are written in the fixed two-phase coordinate system. The transients are described by the system of differential equations of electrical equilibrium of the transformed circuits of the motor and the equation of the rotor motion and the steady-state modes by the system of algebraic equation. The developed algorithms are based on the mathematical model of the motor in which the magnetic path saturation and skin effect in the squirrel-cage bars are taken into consideration. The magnetic path saturation is accounted for by using the real characteristics of magnetizing by the main magnetic flux and leakage fluxes of the stator and rotor windings. Based on them, the differential inductances are calculated, which are the elements of the Jacobi matrix of the system of equations describing the dynamic modes and static characteristic. In order to take into account the skin effect in the squirrel-cage rotor, each bar along with the squirrel-cage rings is divided height-wise into several elements. As a result, the mathematical model considers the equivalent circuits of the rotor with different parameters which are connected by mutual inductance. The non-linear system of algebraic equations of electrical equilibrium describing the steady-state modes is solved by the parameter continuation method. To calculate the static characteristics, the differential method combined with the Newton’s Iterative refinement is used.
期刊介绍:
The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.